

de Salud Carlos III

Subdirección General de Investigación Sanitaria

MEMORIA CIENTÍFICA Y DE GESTIÓN INFORME DE SÍNTESIS DE LA RED

Fondo de Investigación Sanitaria

Deberá cumplimentar los siguientes apartados:

1. SÍNTESIS DE LOS OBJETIVOS CIENTÍFICOS ALCANZADOS POR LA RED

Grado de consecución de los objetivos en relación con los planteados.

2. VALORACIÓN JUSTIFICADA DE CADA UNO DE LOS NODOS DE LA RED

Reflejar la valoración motivada de cada uno de los nodos, según la siguiente escala. 1 (Excelente), 2 (Bueno), 3 (Aceptable) y 4 (Deficiente).

3. OBSERVACIONES

Realizar las consideraciones que se crean necesarias.

Si la Red lo considera oportuno, reflejar en este epígrafe si se solicita una distribución de la ayuda para 2005 entre los nodos diferente de la que figura en la solicitud inicial, siempre que la cuantía total sea igual a la ayuda recibida en 2004.

ESTE INFORME SE COMPLETARÁ CON EL FORMULARIO ENVIADO EN OCTUBRE POR CORREO ELECTRÓNICO A CADA COORDINADOR CIENTÍFICO.

	Expediente N°	G03/018
	Título	Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet
Datos de la red		
	Coordinador	Carmen AYUSO

- Indicar los Apartados del 1 al 3.

1. SÍNTESIS DE LOS OBJETIVOS CIENTÍFICOS ALCANZADOS POR LA RED

Resumen de Objetivos año 2004

1. OBJETIVOS GLOBALES ALCANZADOS

1- Establecimiento, coordinación y supervisión de EsRetNet

a) Pautas Generales de actuación

Durante el Presente año se han acordado realizar reuniones periódicas (al menos 2/año) del Comité científico.

En 2004 se han realizado 4 reuniones que han tenido lugar:

REUNION COMITÉ CIENTIFICO EsRetNet,

4 Febrero 2004, Fundacion Jimenez Díaz, Madrid

REUNION COMITÉ CIENTIFICO EsRetNet,

29 Mayo 2004, Valencia,

REUNION COMITÉ CIENTIFICO EsRetNet,

8 Octubre 2004 Instituto de Salud Carlos III, Instituto de enfermedades raras. Madrid,

REUNION COMITÉ CIENTIFICO EsRetNet.

27 Octubre 2004 Hospital de Tarrasa, Barcelona,

En ellas se acuerdan los objetivos a cumplir por parte de cada nodo y responsable haciéndose a lo largo del año seguimiento específico de temas concretos , así como análisis global de resultados alcanzados y proyectos futuros. (Ver Actas en ANEXOS)

b) Protocolos clínicos

Durante el presente año se han elaborado y revisado los siguientes protocolos, **que** se adjuntan: (Ver anexos)

Protocolos Comunes de Recogida de Datos

- 1. Cuestionario epidemiológico
- 2. Protocolo Estudio Oftalmológico
- 3. Protocolo Electrofisiológico con ERG (y/o EOG y PEV)
- 4. Arbol Genealógico
- 5. Protocolo Clasificación Genética
- 6. Protocolo Clasificación Clínica
- 7. Formato para case report
- 8. Criterios Diagnósticos de Síndrome de Bardet Biedl
- 9. Extracción de muestras biológicas
- 10. Estudio genético molecular específico

Estos protocolos sirven para acordar normas comunes para incluir los casos, calsificarlos, iniciar estudios específicos y reflejar los resultados obtenidos

La metodología específica (modo de proceder o guisa de practica clínica, se incluyen mas abajo como "protocolos clínicos"

Protocolos Internacionales

- 11. Registration Form
- 12. Medical History
- 13. Ophthalmological Examination
- 14. Electrophysiology Exam
- 15. Genetic Form Genetic Form

c) Consentimientos Informados

Los modelos de CI en uso han sido standarizados a partir de los autorizados por los comités de ética de cada centro.

CONSENTIMIENTOS INFORMADOS

- 16. Hoja de información para participar en estudio genético
- 17. Consentimiento Informado

PROTOCOLOS CLÍNICOS

- 18. Guía clínica de estudio Oftalmologico
- 19. Guía clínica de estudio Electrofisiológico
- 20. Protocolo Clínico Usher
- 21. Protocolo Clínico Bardet Biedl
- 22. Protocolo Stargardt

Son guías de procedimientos clínicos para cada estudio específico

d) Especialización de cada grupo

Cada nodo de la red recoge datos clínicos y epidemiológicos de todos los pacientes/familias que le son remitidos y realiza la clasificación genética y clínica del paciente.

Las muestras de cada caso son remitidas al Nodo especializado, según el **esquema que ha sido revisado y ampliado durante 2004**

2. Desarrollo de un registro genético español

En el momento actual el registro de la red EsRetNet está formado por 3686 casos y 1993 familias:

3303 pacientes pertenecientes a 1763 familias no relacionadas con Retinosis Pigmentarias (RP) y 383 casos correspondientes a 230 familias con otras Distrofias Hereditarias de Retina (DR).

Tabla 1: TOTAL resumen FAMILIAS y CASOS con Distrofias de Retina: RP y Otras (Octubre 2004)

FAMILIAS Y CASOS*	VIGO	S. PABLO	TARRASA	FJD	V ROCIO	LA FE	TOTAL
Familias RP	4	210	71	880	284	314	1763
RP Sindrómicas (Consanguinidad)	4	66	9	187	30	100	396 (22%)
RP No Sindrómicas (Consanguinidad)	0	144	62	693	254	214	1367 (20%)
Familias Otras DR	0	37	3	169	10	11	230
TOTAL FAMILIAS DR	4	247	74	1204	294	325	1993
TOTAL CASOS RP	4	304	139	1723	563	570	3303
Casos RP No Sindr.		234	125	1451	521	404	2735
Casos RP Sindrómicos	4	70	14	272	42	166	568
Total Casos Otras DR	0	39	0	324	4	16	383
TOTAL CASOS DR	4	343	139	2047	567	586	3686

(*Se han suprimido los casos recogidos simultáneamente en > 1nodo)

Asumiendo una prevalencia de la RP de 1:4000 personas de la población general, y teniendo en cuenta una población en España de alrededor de 40.000.000 de habitantes, el número estimado de pacientes afectados sería de alrededor de 10.000. Por ello es previsible que el registro contenga cerca del 35% de los afectados en España.

Teniendo en cuenta que se trata de un Registro voluntario, basado en la demanda de los pacientes/facultativos y no al revés, el número de casos que contiene es muy elevado y ha experimentado un incremento en un 5% respecto de la anualidad previa.

Se han analizado las RP tanto desde el punto de vista de su clasificación genética, como clínica.

La distribución por subtipos genéticos de las formas de RP no sindrómicas se muestra en la Tabla 2.

Tabla 2: TOTAL FAMILIAS Y PACIENTES RP NO SINDRÓMICAS

TIPO DE RP	Familias*	TIPO DE RP	PACIENTES*
ADRP	205	ADRP	836
Consanguinidad	(6%)	Hombres	386
		Mujeres	450
ARRP	510	ARRP	967
Consanguinidad	(50%)	Hombres	486
		Mujeres	481
XLRP y CHM	91	XLRP	341
		Hombres	290
		Mujeres	51
SRP	522	SRP	529
Consanguinidad	(0.07%)	Hombres	269
		Mujeres	260
NO CLASIFICA.	39	NO CLAS	62
		Hombres	37
		Mujeres	25

TOTAL	1367	TOTAL	2735
		Hombres	1468
		Mujeres	1267

(*Se han suprimido los casos recogidos simultáneamente en > 1nodo)

La distribución por subtipos clínicos y genéticos de las formas de RP sindrómicas se muestra en la Tabla 3

Tabla 3: TOTAL FAMILIAS Y PACIENTES RP SINDRÓMICAS. (Octubre 2004)

TIPO DE RP	Familias	TIPO DE RP	PACIENTES
Familias Sindrómicas	396	Casos Sindrómicos	568
Consanguinidad	(22%)	HOMBRES	306
		MUJERES	262
Familias	317	CASOS S Usher	459
S Usher		HOMBRES	254
		MUJERES	205
Usher 1	106	Usher 1	169
		HOMBRES	92
		MUJERES	77
Usher 2	205	Usher 2	278
		HOMBRES	155
		MUJERES	123
Usher Sin clasificar	6	Usher SC	12
		HOMBRES	7
		MUJERES	5
Familias S. BB	46	CASOS S. BB	63
OTROS SÍNDROMES*	33		46
TOTAL	396		568

^{*}Ver Tabla 4

Tabla 4: TOTAL FAMILIAS Y PACIENTES OTRO SÍNDROMES RP

DIAGNOSTICO	FAMILIAS	AFECTOS	М	Н
ALSTROM	3	3	1	2
LEOPARD	1	3	3	0
REFSUM	2	3	1	2
+RETRASO MENTAL	6	9	4	5
LIPOFUCSINOSIS	3	4	2	2
NOONAN	1	1	0	1
SENIOR-LOKEN	3	3	2	1
SJÖGREN LARSSEN	1	2	1	1
CATARATA/SORDERA	1	1	1	0
RP MITOCONDRIAL	4	7	5	2
ACID. CARBOXILICA	1	1	0	1
S. ALAGILLE	1	1	1	0
RP+ Atrof. Op+Epilepsia	1	1	0	1
S. CROUZON RP	1	1	0	1
SCA7	1	2	2	0
S. WAGNER	1	1	1	0
S Mulibrey	1	2	0	2
S. Wolfram	1	1	1	0
TOTAL	33	46	25	21

Tabla 5: FAMILIAS Y PACIENTES OTRAS DISTROFIAS DE RETINA (NO RP)

TIPO CLINICO	N° PACIENTES	Nº FAMILIAS
ADDM (distrofia Macular)	116	32
Enfermedad de Stargardt	143	128
Retinosquisis	46	24
NORRIE	18	7
OTRAS	60	39
TOTAL OTRAS RETINOPATÍAS	383	230

Tabla 6: FAMILIAS CON OTRAS DISTROFIAS DE RETINA

OTRAS DR	S. PABLO	TARRASA	FJD	V ROCIO	LA FE	TOTAL
TOTAL FAMILIAS	2	3	27	0	0	32
ADDM						
TOTAL FAMILIAS	35	0	77	10	6	128
STGD						
TOTAL FAMILIAS	0	0	22	0	2	24
XLRS						
TOTAL FAMILIAS	0	0	7	0	0	7
NORRIE						
TOTAL FAMILIAS	0	0	36	0	3	39
OTRAS						
TOTAL FAMILIAS Otras DR	37	3	169	10	11	230

Tabla 7: TOTAL PACIENTES con Distrofias Maculares AD y ENFERMEDAD de Stargardt

Total Casos	S. PABLO	TARRASA	FJD	V ROCIO	LA FE	TOTAL
ADDM	2	0	114	0	0	116
STG	37	0	97	0	9	143

3. Formato para la base de datos y formato para "case report"

La ficha para el registro de cada caso en la base de datos (de cada nodo) se adjunta. Esta ficha se cumplimentará con los datos disponibles en cada caso.

Asimismo se ha realizado una ficha de datos mínimos a obtener en el caso de pacientes/familias con mutación o genotipo identificados o con fenotipos especiales. Estos son los datos generalmente requeridos para la publicación del caso en las revistas especializadas.

(Ver Formato para case report, en ANEXOS)

Durante el presente año 2004 se han incluido los formatos en inglés, para standarizar datos de cara a nuestra participación en el proyecto europeo Evi-Genoret y otras colaboraciones internacionales (Ver ANEXOS)

4. Revisión de los procedimientos clínico y molecular

Durante la anualidad 2004 se ha actualizado el inventario de técnicas disponibles en la red se resume en la tabla 8.

Se han recogido los protocolos de las técnicas correspondientes VER ANEXO

Tabla 8: Inventario de técnicas disponibles en la red

Tadia 8: inventario de tecnicas dis	pombles en la reu				
Técnicas Disponibles:					
Purificación Acidos Nucleicos	Tejido				
Purificación DNA manual y con kit	sangre,				
Purificación DNA automática	fibroblastos,				
Purificación RNA manual y con kit	liquido amniótico sin y con cultivo, biopsia corial, retina				
Screening de mutaciones					
SSCP con electroforesis en gel y P					
SSCP con electroforesis capilar					
DGGE					
Identificación de mutaciones					
Secuenciación Automática					
SNP por Digestión Enzimática					
SNP por PCR Cuantitativa					
Análisis de Polimorfismos (Indirecto)					
SNP por Digestión Enzimática					
Microsatélites y Genescan					
Estudios RNA y Expresión					
RNA (RT-PCR)					
Técnicas de Expresión "in vitro"					
Otras Técnicas					
Clonaje de genes RP					
PCR Cuantitativa					
Microarrays					
Cultivo Celular	sangre, fibroblastos, liquido amniótico, biopsia corial COS 7 3T3				
Técnicas Citogenéticas					
FISH					

Tabla 9: Inventario de Recursos Bioinformáticos disponibles en la red

Métodos de Análisis	
Linkmap Cyrillic	
Herramientas Bioinformáticas	
Programa Oligo	
Winmelt	
DNASIS	
BLAST	
Diseño oligos	

Curvas de fusión	
Análisis de Restricción	
Análisis de secuencias	

5. Puesta a punto de metodología genética indirecta en loci DR Objetivo sólo del 1er año

Pese a que este objetivo inicialmente sólo iba a desarrollarse durante el 1er años, la incorporación de nuevas técnicas de estudio, particularmente el estudio de polimorfismos tipo SNP, mediante microarrays de genotipado (LCA chip y ABCA- chip) junto a la nueva identificación de genes implicados en patologías DR ha obligado a revisar y actualizar la metodología indirecta durante este 2º año.

La metodología adoptada para el estudio indirecto de las DR, depende del locus/gen objeto del estudio.

Abajo se indica la metodología utilizada en la red (EsRetNet) para dicho estudio, clasificada por tipo genético y con las actualizaciones introducidas durante 2004, para los estudios en Distrofias de Retina XL, AD, AR y S Usher.

Durante el presente año se han incluido nuevos estudios con ampliación de las correspondientes metodologías:

Amaurosis Congénita de Leber (LCA) y RP precoz

Síndrome de Bardet Biedl

Enfermedad de Stargardt (VER ANEXO)

Tabla 10: ANÁLISIS GENETICO INDIRECTO Utilizado en DR: Loci en el cr X. Loci en el cr X.

Loci en el Ci X.				
Localización		GEN		
cromosomica	STR/ SNF	PRELACIONADO	TÉCNICA	PRIMERS
ENFERMEDAD Norrie	•		_	
	DXS8080	NDP	PCR fluorescente	Weissenbach,J
Xp11.4-11.3	MAOB	NDP	PCR fluorescente	Cerveha, Paul
RETINOSQUISIS			_	
Xp22.2-22.1	DXS999	XLRS1	PCR fluorescente	Weissenbach,J
Xp22.2-22.1	DXS9911	XLRS1	PCR fluorescente	Huopaniemi, LL
Xp22	DXS989	XLRS1	PCR fluorescente	Weissenbach,J
XLRP			_	
Xp11-p22	p58-1	RP2	Southern/ Mspl	Ott 1987
Xp11	•	RP2	PCR/PAGE	Kirchgessner 1991
Xp11.4	MAO-A	RP2	PCR/PAGE	Black 1991
			PCR/ Digest. Dral	a
Xp21.1	OTC	RP2	Mspl	Ott 1985
Xp21.1	DXS1068	RP2/RPGR	PCR/PAGE	Gyapay 1994
Xp21.1	p754	RPGR	Southern/ Pstl	Van Ommen
Xp21	5'DysII	RPGR	PCR/PAGE	Feener 1991
Xp22		RPGR/RP23	PCR/PAGE	Gyapay 1994
Xp22.1	DXS1226	RPGR/RP23	PCR/PAGE	Gyapay 1994
Xp22.2	DXS999	RPGR/RP23	PCR/PAGE	Gyapay 1994
Xp22.3	DXS207	RPGR/RP23	PCR/PAGE	Weissenbach 1992
Xp22.3	DXS1060	RPGR	PCR/PAGE	Gyapay 1994
Xq11	AR		PCR/PAGE	La Spada 1991
Xq23	DXS456	RP24	PCR/PAGE	Weissenbach 1992
Xq24	DXS424	RP24	PCR/PAGE	Weissenbach 1992
Xq24-q25	DXS425	RP24	PCR/PAGE	Weissenbach 1992
Xq26	DXS1192	RP24	PCR/PAGE	Gyapay 1994
Xq28	p39	RP24	PCR/PAGE	Wehnert 1993
COROIDEREMIA			_	
Xq21	SNP_Ex.5		PCR/Digest. HinGI	Nesslinger 1996
Xq21	VNTR_I-9		PCR/Electrof capilar	Van Bokhoen 1994/96
Xq21	STR I-14	CHM	PCR/Electrof capilar	Van Bokhoen 1994/96

Tabla 11: ANÁLISIS GENETICO INDIRECTO Utilizado en DR: Loci AUTOSOMICOS DOMINANTES

	HOOC BOMMAAN	1 = 0		
localización		GEN	,	
cromosómica	STR/ SNP	RELACIONADO	TÉCNICA	PRIMERS
			_	
RP4	RHO	Rodopsina	PCR/PAGE	Weber y May 1989
RP4	D3S1587	Rodopsina	PCR fluorescente	GDB:199769
RP4	D3S1292	Rodopsina	PCR fluorescente	GDB:188278
			_	
RP7	RDS	Periferina/RDS	PCR/PAGE	Kumar-Singh 1991
RP7	D6S105	Periferina/RDS	PCR/PAGE	Weber 1991
RP7	HLA-DRA	Periferina/RDS	PCR/digest. Ddel	Eliaou 1991
			_	
RP1	D8S87	RP1-protein	PCR/PAGE	Weber 1991
RP1	PLAT	RP1-protein	PCR/PAGE	Blanton 1991
RP10	D7S514	IMPDH1	PCR/PAGE	Weissenbach 1992
RP10	D7S480	IMPDH1	PCR/PAGE	Weissenbach 1992
RP10	D7S486	IMPDH1	PCR/PAGE	Weissenbach 1992
RP9	D7S460	PMP1K	PCR/PAGE	Hudson 1992
RP9	D7S435	PMP1K	PCR/PAGE	Hudson 1992
DD44	D400044	DDDE04		Waissanhash 1000
RP11	D19S214	PRPF31	PCR/PAGE	Weissenbach 1992
RP11	D19S180	PRPF31	PCR/PAGE	Weissenbach 1992
DD42	D170020	DDDE0	PCR/PAGE	Cyanay 1004
RP13	D17S938	PRPF8		Gyapay 1994
RP13	Tp53	PRPF8	PCR/PAGE	Weissenbach 1992

Tabla 12a: ANÁLISIS GENETICO INDIRECTO Utilizado en DR: Loci AUTOSOMICOS RECESIVOS

localización cromosómica	STR/ SNP	GEN RELACIONADO	TÉCNICA	PRIMERS
4p16.3	D4S227 (CA)n D4S127 D4S111	PDEB PDEB PDEB	PCR + ECL PCR+ electrof acrilamida PCR+ electroforesis	Weber et al 1993
17q25	RFLP Taq I RFLP Rsal	PDEG PDEG	PCR+ electroforesis PCR+ electroforesis	
15q26	RFLP Pvull D15S116 D15S127 D15S130	RLBP1 RLBP1 RLBP1 RLBP1	Southern PCR + ECL PCR + ECL PCR + ECL	Cotran et al 1990 Genethon Genethon Genethon
10q11.2	RFLP Mspl RFLP Bgl II	IRBP IRBP	PCR + digesión PCR + digestión	Wu et al 1991 Humphries et al 1991
2q24-q37	D2S126 D2S140 D2S125 D2S206	SAG SAG SAG SAG	PCR+electrof. acrilamida PCR+electrof. acrilamida PCR+electrof. acrilamida PCR+electrof. acrilamida	Genethon Genethon
1p31	D1S2803 D1S2806 D1S2829 D1S219	RPE65 RPE65 RPE65 RPE65	PCR fluorescente PCR fluorescente PCR fluorescente PCR fluorescente	GDB:611997 Genethon GDB:612735 Genethon
6q	D6S257 D6S430 D6S1681 D6S460	RP25 RP25 RP25 RP25	PCR fluorescente PCR fluorescente PCR fluorescente PCR fluorescente	Genethon Genethon Genethon
15q	D15S1050	NR2E3	PCR fluorescente	Genethon

Tabla 12b: ANÁLISIS GENETICO INDIRECTO Utilizado en DR:
Loci Amaurosis Congénita de Leber (LCA) y AUTOSOMICO RECESIVO PRECOZ

localización		GEN	AUTOSOMICO RECESIVO PRECOZ
<mark>cromosómic</mark>	a STR/ SNP	RELACIONADO	TÉCNICA PRIMERS
1p31	D1S2803	RPE65	PCR fluorescente GDB:611997
	D1S2806	RPE65	PCR fluorescente Genethon
	D1S2829	RPE65	PCR fluorescente GDB:612735
	D1S219	RPE65	PCR fluorescente Genethon
1q31-32.1	D1S2757	CRB1	PCR fluorescente GDB:610611
•	D1S408	CRB1	PCR fluorescente GDB:198834
2q14.1	D2S1896	MERKT	PCR fluorescente GDB:579551
•	D2S2269	MERKT	PCR fluorescente GDB:610104
	D2S160	MERKT	PCR fluorescente GDB:188422
	D2S1892	MERKT	PCR fluorescente GDB:579530
4q31	D4S2976	LRAT	PCR fluorescente
. 90 .	D4S3021	LRAT	PCR fluorescente
	D4S2999	LRAT	PCR fluorescente
	D4S3049	LRAT	PCR fluorescente GDB:614724
14q11	D14S1003	RPGRIP1	PCR fluorescente GDB:608730
	D14S122	RPGRIP1	PCR fluorescente GDB:198762
	D14S72	RPGRIP1	PCR fluorescente GDB:188285
	D14S283	RPGRIP1	PCR fluorescente GDB:200319
	A574G	RPGRIP1	Microarray
	907-17 del TAA	RPGRIP1	Microarray
	G3097C	RPGRIP1	Microarray
17p13.1	G10693	AIPL1	PCR fluorescente
	D17S796	AIPL1	PCR fluorescente GDB:188183
	D17S938	AIPL1	PCR fluorescente GDB:199592
	D17S578	AIPL1	PCR fluorescente GDB:189977
	G268C	AIPL1	Microarray
17p13.1	D17S1796	GUCY2D	PCR fluorescente
	D17S1353	GUCY2D	PCR fluorescente GDB:435120
	D17S786	GUCY2D	PCR fluorescente GDB:187877
	D17S1858	GUCY2D	PCR fluorescente
	G154T	GUCY2D	Microarray
	T2345A	GUCY2D	Microarray
19q13.3	D19S902	CRX	PCR fluorescente
	D19S596	CRX	PCR fluorescente GDB:378151
	D19S596	CRX	PCR fluorescente GDB:378151
	D19S879	CRX	PCR fluorescente GDB:608262
	5100070	OIV	. 3.7 Hadi 6000Hd 325.000202

Tabla 13 ANÁLISIS GENETICO INDIRECTO Utilizado en DR: Loci S DE USHER

LOCI S DE C	JOHEK			
Localización		GEN		
cromosómica	STR/ SNP	RELACIONADO	TÉCNICA	PRIMERS
Usher TIPO 1				
USH1A	D14S267		PCR/PAGE	Gyapay 1994
USH1A	D14S250		PCR/PAGE	Larget-Piet 1994
USH1A	D14S78		PCR/PAGE	Larget-Piet 1994
USH1A	D14S272		PCR/PAGE	Gyapay 1994
USH1B	ROM1	Miosina VIIA	PCR/SSCP	Nichols 1994
USH1B	INT2	Miosina VIIA	PCR/PAGE	Polymeropoulos,1990
USH1B	D11S916	Miosina VIIA	PCR/PAGE	Gyapay 1994
USH1B	D11S527	Miosina VIIA	PCR/PAGE	Brown 1991
USH1B	OMP	Miosina VIIA	PCR/PAGE	Pieke-Dahl 1993
USH1B	D11S911	Miosina VIIA	PCR/PAGE	Gyapay 1994
USH1B	D11S35	Miosina VIIA	PCR/PAGE	Litt 1990
USH1B	D11S528	Miosina VIIA	PCR/PAGE	Hauge 1991
USH1C	D11S419	Harmonina	PCR/PAGE	Smith 1992
USH1C	D11S926	Harmonina	PCR/PAGE	Fantes 1995
USH1C	D11S899	Harmonina	PCR/PAGE	Fantes 1995
USH1C	D11S860	Harmonina	PCR/PAGE	McNoe 1992
USH1D	D10S218	Cadherina 23	PCR/PAGE	Wayne 1996
USH1D	D10S195	Cadherina 23	PCR/PAGE	Wayne 1996
USH1D	D10S202	Cadherina 23	PCR/PAGE	Wayne 1996
USH1E	D21S1257		PCR/PAGE	Chaïb 1997
USH1E	D21S269		PCR/PAGE	Chaïb 1997
USH1E	D21S1258		PCR/PAGE	Chaïb 1997
USH1F		Protocadherina15		
USH1G		SANS		
Usher TIPO	2			
USH2A	D1S217	Usherina	PCR/PAGE	Kimberling 1995
USH2A	D1S419	Usherina	PCR/PAGE	Kimberling 1995
USH2A	D1S237	Usherina	PCR/PAGE	Kimberling 1995
USH2A	D1S474	Usherina	PCR/PAGE	Kimberling 1995
USH2A	D1S229	Usherina	PCR/PAGE	Kimberling 1995
USH2A	pEKH7.4	Usherina	Southern	Kumling-Wolff 1987
USH2A	•	Usherina	Southern	Chirwing 1984
USH2A	pYNZ2.3	Usherina	Southern	Buetow 1990
USH2A	pTHH3.3	Usherina	Southern	Nakamura 1988
USH2B	p	C 0.1.01.11.0		
Usher TIPO	3			
USH3	RHO	Clarina-1	PCR/PAGE	Weber y May
USH3	D3S1555	Clarina-1	PCR/PAGE	Sankila 1995
USH3	D3S1308	Clarina-1	PCR/PAGE	Sankila 1995
USH3	D3S3705	Clarina-1	PCR/PAGE	Gyapay 1994
USH3	D3S1299	Clarina-1	PCR/PAGE	Sankila 1995
USH3	D3S1233	Clarina-1	PCR/PAGE	Sankila 1995
USH3	D3S1279	Clarina-1	PCR/PAGE	Joensuu 1996
00110	2001004	Oldfilla 1	- OIVI AGE	33311344 1330

Tabla 14 ANÁLISIS GENETICO INDIRECTO Utilizado en DR: Loci S DE Bardet BIEDL

Localización		GEN		
cromosómica	STR/ SNP	RELACIONADO	TÉCNICA	PRIMERS
11q13	D11S1883	BBS1	PCR/PAGE	Weissenbach 1994
16q21	D16S408	BBS2	PCR/PAGE	
	D16S265		PCR/PAGE	
	D16S186		PCR/PAGE	Phillips 1991
3p12	D3S1251	BBS3	PCR/PAGE	GDB
	D3S1752		PCR/PAGE	GDB
	D3S1271		PCR/PAGE	GDB
15q22.2-q23	D15S131	BBS4	PCR/PAGE	GDB
	D5S204		PCR/PAGE	GDB

Tabla 15 ANÁLISIS GENETICO INDIRECTO Utilizado en DR: Loci STARGARDT

Localización	OAIND I	CEN		
Localización	STD/ SND	GEN RELACIONADO	TÉCNICA	PRIMERS
cromosómica				PRIMERS
1p22.1	G635A	abca4	MICROARRAY	
	A1268G		MICROARRAY	
	C1269T		MICROARRAY	
	delG IVS+5		MICROARRAY	
	G2828A		MICROARRAY	
	C4203A		MICROARRAY	
	C IVS+48 T		MICROARRAY	
	A5603T		MICROARRAY	
	G5682C		MICROARRAY	
	A5814G		MICROARRAY	
	A5844G		MICROARRAY	
	C6069T		MICROARRAY	
	T6285C		MICROARRAY	
	C IVS+21 T		MICROARRAY	
1p31-1p21	D1S435-F		PCR fluorescente	Martínez Mir et al. 1997
1pter-1qter	D1S2804		PCR fluorescente	Martínez Mir et al. 1997
1pter-1qter	D1S236		PCR fluorescente	Martínez Mir et al. 1997

6. Desarrollo de metodología genética directa en genes DR

Cada NODO ha adoptado la estrategia de análisis mas idónea para los genes objeto de su estudio, teniendo en cuenta fundamentalmente dos aspectos:

Características del gen y mutaciones a estudiar y

Metodología mas desarrollada en su nodo.

De este modo se ha aumentado considerablemente la sensibilidad y especificidad en el cribado mutacional y caracterización genética.

Durante la anualidad 2004, se han introducido las siguientes novedades:

Incorporación de técnica de SSCP con P y SSCP con electroforesis capilar para el estudio de RPGR

Análisis de sensibilidad y especificidad de ambas técnicas

Incorporación de técnicas de secuenciación automática y estudio de RNA y ambas para el estudio de CHM

Análisis de sensibilidad y especificidad de ambas técnicas

Incorporación de la técnica de microarray para genotipado de ABCA4 en el estudio de Enfermedad de Stargardt, Distrofia Conos > Bastones y RP

Análisis de eficacia y sensibilidad de la técnica

Incorporación de la técnica de microarray para genotipado de 8 genes asociados a Amaurosis Congénita de Leber y RP precoz

Análisis de eficacia y sensibilidad de la técnica

Tabla 16 ANÁLISIS GENETICO DIRECTO Utilizado en DR: Genes y Técnicas utilizadas.

TIPO DR	GEN	Nº GenBank	Localiz	Exones	Frag	Primers	Primers diseño	Método	NODO
		Accession	crom.	Analiz.	Anal	Ref	propio	Screenig	
XLRP	RPGR	NM 000328		15+ORF1 5	8+13			SSCP SECUENC. y RT-PCR	F.ID
XLRP	RP2	NM_006915	·	5	8	Schwahn 1998	M Garcia	SECUENC. SSCP +	
СНМ	СНМ	NM_000390		15+4	16+4	Van den Hurk 1994	M Garcia	SECUENC.	FJD
XLRS	RS-1	NM_000330	Xp22.2- 22.1	6	6	Sauer 1997	R Riveiro	SECUENC.	FJD
NORRIE	NDG	NM_000266	Xp11.4	3	4	Berger	R Riveiro	SECUENC.	FJD
ADRP	RHO	NT 005612	3q22.1	5	7	Tesis Maria	M.Carballo	DGGE + SECUENC.	Tarrassa
ADRP	CRX	_ NT_011109	19q13.	3	4	Tesis María	M.Carballo	DGGE + SECUENC. SSCP +	Tarrassa
ADRP	NRL	NT_026437	14q11. 2	2	4	María 2000	M.Carballo	DGGE + SEC. DGGE +	Tarrassa
ADRP	RDS	NT_007592	6p21.2	2	3	Tesis Maria	M.Carballo	SECUENC.	
ADRP	ROM1	NT_033903	11q13	3	5	Tesis Maria	M.Carballo	DGGE + SECUENC. DGGE +	Tarrassa Tarrassa
ADRP	RP1	NT_008183	8q12.1	1	2	Tesis Maria	M.Carballo	SECUENC.	Tallassa
ADRP	HPRP3	NT_032962	•	1	1	Maria 2003	M.Carballo	DGGE + SECUENC. DGGE +	Tarrassa Tarrassa
ADRP	PRPF31	NT_011109	19q13. 42	1	1	Maria 2003	M.Carballo	SECUENC.	1 011 0550

		47 - 4	,				D00E :	T
ADRP	PRPF8 NT_	17q1: 010718 3	3. 1	1	María 2003 M		SECUENC.	Tarrassa _
ADRP	FSCN2 NT_	024871 17q2	5 5	7	Tesis María José M		SECUENC.	Tarrassa
ADRP	IMPDH1 NM	_000883 7q31	3 1	1	María 2003 M	.Carballo	DGGE + SECUENC.	Tarrassa
ADDM	ELOVL4 NT	- 007299 6a14	1 6	6	Tesis Maria Jose M		DGGE + SECUENC.	Tarrassa
/ LD D IVI		007200 0411	. 0	Ŭ	141	. our builo	02002110.	
ARRP	RPE65 NM	000220 4=24	4.4	4.4	Marlhens 1997		SSCP+ SECUENC	LIV/D
	_	_000329 1p31	14		Weston		SSCP +	
ARRP	USH2A NT_	077953 1q41	21	24	2000		SECUENC. SSCP +	Sant Pau
ARRP	CRBP1 NT_	005612 3q23	4	4	Bernal 2003S.		SECUENC. SSCP +	Sant Pau
ARRP	PDEB NT_	037622 4p16 10q2		24	Riess 1992 Valverde		SECUENC. SSCP +	Sant Pau
ARRP	IRBP NM_	_002900 1	4	8			SECUENC.	Sant Pau
ARRP	RGR NT_	030059 10q2	3 7	7	Bernal 2003S.		SSCP + SECUENC. SSCP +	Sant Pau
ARRP	RLBP1 NT_	010274 15q2		8	Bernal 2001S.	Bernal	SECUENC.	Sant Pau
ARRP	CRB1 NM_	1q31 _012076 32.1	12	28	Hollander 1999,2001 S		SSCP + SECUENC.	Sant Pau
	_							
ARRP	GABRR1 NM	_008075 6	10	10	Marcos I y cols, 2000	Marcos	SSCP + SECUENC	HUVR
ARRP	GABRR2 NM	_002043 6	9	9	Marcos Ly	Marcos	SSCP + SECUENC	HUVR
ARRP	ELOVL4 NM	022726 6	6	6	LiVyyoolo	Marcos	EMD + SECUENC	HUVR
ARRP	GIcATS NM	080742 6	4	4	Marcos I y	Marcos	EMD +	HUVR
ARRP	LENGSI	016571 6	3	6	COIS, 2002	Marcos	SECUENC FRET +	HUVR
ARRP	IN	_	-		publicado		SECUENC EMD +	HUVR
, u u u	HELO1 AF_	_231981 ⁶	7	7	publicado ^I	Marcos	SECUENC	
ARRP	RAB23 NM	_016277 6	7	7	Marcos I y cols, 2003	Marcos	EMD + SECUENC	
ARRP	SMAP1 NM	_021940 6	11	11	Marcos I y cols, 2002	Marcos	EMD + SECUENC	HUVR
ARRP	RIM1 NM	_014989 6	31	33	Barragan I I	Marcos e Barragán	EMD + SECUENC	HUVR
					y 0010, 11	Jarragan	OLOGENO	•
LCA	CRB1 NM_	_012076 1q31	10	68m	AsperBio		Microarray.	FJD
LCA	RPE65 NM_	_000329 1p31	14	81m	AsperBio		Microarray.	FJD
LCA	AIPL1 NM_	_016118 17 p1	3 6	25m	AsperBio		Microarray.	FJD
LCA	CRX NM_	_014336 19q1	3. 3	29m	AsperBio		Microarray.	FJD
LCA	GUCY2 NM_	_000180 17p1	3 20	67m	AsperBio		Microarray.	FJD
LCA	LRAT NM_	_004744 4q31	2	2m	AsperBio		Microarray.	FJD
LCA	MERKT NM_	_000329 2q14	1 3	3m	AsperBio		Microarray.	FJD
LCA	RPGRIP NM_	_020366 14q1	1 24	32m	AsperBio		Microarray.	FJD
USH1	Miosina NT_	033927 11q1	3. 49	49	Weston199 Cu	uevas	SSCP+	La Fe

	7A		5			6/Levy1997	7 1998	SECUENC.	
			17q25.						
USH1	SANS	NT_010641	2	2	3	Weil 2003 Weston 2000/ van		SECUENC.	La Fe
						Wijk et al.,	Nájera	SSCP +	
USH2	Usherin	aNT_077953	1q41	21+51	7	62004	2002	SECUENC.	La Fe
USH3	Clarina-	1NT_005612	3q25	4	4			SECUENC.	La Fe
						Katsanis		SSCP/secu	
BBS	MKKS	NM_018848	20p12	4	8	2000		enciación	Uvigo
						Nishimura		SSCP/secu	
BBS	BBS2	NM_031885	16q21	17	17	2001		enciación	Uvigo
						Mykytyn		SSCP/secu	
BBS	BBS1	NM_024649	11q13	17	17	2002		enciación	Uvigo
						Allikmets			
STG	ABCA4	NM_000350	1p22.1	50	400m	า 1997		Microarray	Uvigo / FJD

7. Análisis del espectro mutacional de los genes conocidos DR

Hasta el momento actual, y aplicando la metodología arriba indicada en un grupo de familias DR informativas, clasificadas de acuerdo con el tipo clínico y genético, se han podido identificar la mutación responsable en un cierto nº de familias.

A continuación se refieren los resultados obtenidos, así como el tipo de mutaciones observadas en cada caso.

Estudio en ADRP y ADDM

Se han estudiado molecularmente 190 familias ADRP y 28 ADDM no emparentadas. El estudio molecular se ha realizado en los NODOS 1, 3, 5 y principalmente en el NODO 4.

Se han encontrado mutaciones en los genes RHO, RDS, ROM-1, RP1, NRL, CRX, PRPF3, PRPF31, FSC2 y IMPDH1

Tabla 17: ANÁLISIS GENETICO del Gen Rodopsina (RHO)

Tipo RP	S.PABLO*	TARRASA*	FJD*	V ROCIO*	LA FE	TOTAL
ADRP	4/14*	3/32*	15/91	7/29*	4/31	33/196 (17%)
ARRP	0/52	0/33	0/52	0/54		0/191
SRP	0/13	0/84	0/32	0/ 3		0/132
No C		0/11				0/ 11
TOTAL	4/79*	3/160*	15/175*	7 /86*	4/31	33/530

^{*} Familias comunes estudiadas en distintos NODOS, las mutaciones contadas 1 sola vez

Se ha realizado un cribado extenso de familias RP con diferentes tipos hereditarios. Sin embargo únicamente se encontraron mutaciones en el grupo de familias ADRP.

Tabla 18. Mutaciones de Rodopsina causantes de RP en población española y Correlación Genotipo Fenotipo

Mutación famil	ia Secuencia	Dominio	Fenotipo	Década de	Evolución a
		Proteico	RP	Inicio	Ceguera Legal
Asn15Ser V-87	3 AAT→AGT	Intradiscal	Regional	Variable	Lenta, variable
Thr17Met V-N3	0 ACG→ATG	Intradiscal	Regional	Variable	Lenta, variable
Thr17Met M-70	6 ACG→ATG	Intradiscal	Regional	Variable	Lenta, variable
Pro23Leu B	CCC→CTC	Intradiscal	Regional	Variable	Lenta, variable
Leu40Pro* S27)	Transmembrana	Difusa	4	5
Met44Thr* M42	2 ATG→ACG	Transmembrana	Difusa	2	5 ^a
Asn73Del B96-8	14				
Gly106Arg M24	2 GGG→AGG	Intracitoplasmico	Regional	Variable	Lenta, variable
S12	9			2-3	6
Gly114Asp V	GGC→GAC	Transmembrana	Difusa	1	5
Arg135Trp M31	4 CGG→TGG	Intracitoplasmico	Difusa	2	4
Arg135Leu SJE	CGG→CTG	Intracitoplasmico	Difusa	2	6
Tyr136X* S-9	$TAC \rightarrow TAA$	-	Difusa	>4	8
Val137Met* M6	GTG→ATG	Intracitoplasmico	No clasificada	Variable	Variable
				1-4	4-7
Ala164Glu S26	2 GCG→GAG	Transmembrana	Difusa	2	4
Pro 171Gln S10	5 CCA→CAA	Transmembrana	Difusa	2	4
Splic 2°intr* SJE	A3811G	-	No clasificada	2-7	Variable 4-8
Gly182Ser M740	/S CGC→AGC		Regional	1	4
Gly182Ser S26	3 CGC→AGC		Regional		

Gly182Ser	B111	CGC→AGC		Regional		
Ser186Pro	M115	TCG→CCG	Intradiscal	Difusa	2	5
Gly188Arg	M352	$GGA \rightarrow AGA$	Intradiscal	Difusa /atipica.	1	6-7
Asp190Tyr,	M188	$GAC \rightarrow TAC$	Intradiscal	Regional	Variable	Variable
His211Arg	SJD	CAC→CGC	Transmembrana	Difusa	1-2	4-5
Pro215Leu*	M566	CCG→CTG	Transmembrana	Difusa	1	4
Splic 4aintr*	M568	A5167T	-	Difusa	2-3	Variable
Thr289Pro*	M206	$ACC \rightarrow TCC$	Transmembrana	Difusa	2	5
Val345Gly	S	GTG→GGG	Intracitoplasmico	Difusa	2	5
Ala346Pro	S 174	GCC→CCC	Intracitoplasmico	Difusa	1	5
Pro347Leu**	M220	CCG→CTG	Intracitoplasmico	Difusa	1	3
Pro347Leu**	M542	CCG→CTG	Intracitoplasmico	Difusa	1	3
Pro347Leu**	M685	CCG→CTG	Intracitoplasmico	Difusa	1	3
Pro347Leu**	V	CCG→CTG	Intracitoplasmico	Difusa	1	3

^{*}Mutación solo reportada en población española

En la serie de pacientes españoles se han identificado 8 nuevas mutaciones no reportadas en la literatura mundial.

La mayoría de las mutaciones fueron de tipo missense (27/30), hubo 2 mutaciones en sitio de splicing, 1 mutación nonsense y 1 una deleción.

En todas las familias, excepto en 2, la mutación se encontraba en los pacientes afectos en heterocigosis.

En 2 familias hubo también pacientes homozigotos para la mutación (Val137Met y Gly188Arg). En estas familias, los fenotipos observados no difirieron en gravedad entre heterozigotos u homozigotos.

No se observaron casos de Penetrancia Incompleta, aunque algunas mutaciones, asociadas a fenotipo regional, presentaron gran variabilidad clínica con fenotipos suaves.

En el caso de las mutaciones del gen de Rodopsina, se puede establecer una correlación genotipo-fenotipo, en base al dominio de la proteína que resulta afectado por la mutación.

Sólo hubo 3 mutaciones que se observaron en mas de una familia, no emparentadas entre sí, el resto se presentó en una única familia cada una.

Tabla 19. Mutaciones de Rodopsina Recurrentes

MUTACION	Familia	Cambio
Thr17Met	V-N30 M-706	ACG→ATG
Gly182Ser	M740/S S268 B111	CGC→AGC
Pro347Leu	M220 M542 M685 V	CCG→CTG

Tabla 20: ANÁLISIS GENETICO del Gen RDS/Periferina

TOTAL FAMILIAS	S. PABLO	TARRASA	FJD	V ROCIO	LA FE	TOTAL
ADRP	0/9	0/30	2/90	0/31	1/26	3/186 (2%)
ADDM	2/5	2/2	8/21			12/28 (43%)

^{**}Mutación Presente en 4 familias no emparentadas.

Tabla 21. Mutaciones de RDS/ Periferina y Fenotipos asociados

Mutación	Secuencia	Dominio Proteico	Fenotipo	Década de Inicio	Evolución a Ceguera Legal
Asp173Val	GAC→GTC	2º intradiscal	RP no clasificada	Variable. 1	>4, década cataratas precoces
Gly208Asp	GGC→GAC	2º intradiscal	RP no clasificada	Variable. 2-4	6, década
Pro216Ser	$CCT \rightarrow TCT$	2º intradiscal	ADRP	2ª década	5-6 década
Tyr141His	CTA→CCA	2º intradiscal	MD	5	Lenta, 6 década
Arg142Trp(2)	CGG→TGG	2º intradiscal	MD	4	6 década
Arg172Trp (2)	CGG→TGG	2º intradiscal	MD	5	7 década
689del T	CCT→CC-	2º intradiscal	MD	5	6 década
857del17bp	Del17 bp	2º intradiscal	MD	Variable. 4-6	Lenta,, 7-8 década
Arg195Leu		2º intradiscal	MD	2	4 decada
Cys213Phe	$GC \rightarrow TT$	2º intradiscal	MD	Variable. 2-6	Variable
Cys214Tyr	TGC→TAC	2º intradiscal	MD	4	Lenta

En la serie de pacientes españoles se han identificado (8) nuevas mutaciones no reportadas en la literatura mundial.

La mayoría de las mutaciones fueron de tipo missense (9/11), y hubo 2 deleciones que provocaban un cambio en la pauta de lectura (frameshift) y por tanto una proteína truncada.

En todas las familias, la mutación se observó en heterocigosis en los pacientes afectos.

En 4 familias se observó una gran variabilidad clínica intrafamiliar.

ANÁLISIS GENETICO de los Genes:

ROM-1, RP1, NRL, CRX, PRPF3, PRPF8, y PRPF31 (Ver Memoria de 2003) Fascina 2 e IMPDH1 (Ver Tablas 22 a 24)

Tabla 22: ANÁLISIS GENETICO del Gen FSC (EXONES 1,2,3,y 5)

TOTAL FAMILIAS	FJD	S.PABLO	V ROCIO	TARRASA	LA FE	TOTAL
ADRP	0/54	1*/13	0/22	0/26	0/21	1/136 (1%)
ADDM	0/13	0/2				0/15

^{*}Lys302Stop / FSCN2-2 B ADRP-111

Se han identificado numerosos polimorfismos en le gen Fascina, algunos de ellos a nivel de DNA (mutaciones sinónimas sin cambio de aminoácido) y otros a nivel protéico (mutaciones missense).

Dos de los poliorfismos se encontraron en desequilibrio de ligamiento LD (Tyr151Tyr/Asn349Asn)

Los estudios de segregación familiar han demostrado que dichos cambios no están asociados a DR en las familias.

Tabla 23: Polimorfismos del Gen FSC: Tipo y Frecuencias Alélicas

Cambio	Tipo	Exon	Frec Alélica N=302 alelos
His7Tyr	missense	FSCN2-1A	1 (0,003)
Phe111Phe,	sinónimo	FSCN2-1B	3 (0,01)

Ala122Thr /	missense	FSCN2-1B	1 (0,003)
Ser126Phe	missense	FSCN2-1B	1 (0,003)
His138Tyr	missense	FSCN2-1B	2 (0,007)
Arg149Gln	missense	FSCN2-1B	1 (0,003)
Tyr151Tyr	sinónimo	FSCN2-1B	3 (0,01)
Ala240Thr	missense	FSCN2-1C	1 (0,003)
His322His	Sinónimo	FSCN2-2	1 (0,003)
Ala323Thr	missense	FSCN2-2	14 (0,05)
Asn331His	missense	FSCN2-3	1 (0,003)
Asn349Asn	Sinónimo	FSCN2-3	3 (0,01)
Phe367Leu	missense	FSCN2-3	1 (0,003)

Se ha identificado una mutación nonsense (Lys302Stop) en una familia en la que previamente se había encontrado otra mutación en el gen de la Rodopsina. Para conocer si dicha mutación tiene un papel etiopatogénico como gen modificador o es un polimorfismo no relacionado es necesario realizar el estudio familiar

Tabla 24: ANÁLISIS GENETICO del Gen IMPDH1

TOTAL FAMILIAS	S. PABLO	TARRASA	FJD	V ROCIO	LA FE	TOTAL
ADRP	0/12	0/24	2/54	0/25	2/19	4/134 (3%)
ADDM	0/2	0	0/18	0	0	0/20

Tabla 25. Mutaciones y Polimorfismos del gen IMPDH1

MUTACION	Familia	Cambio
Arg224Pro	M-84	***
Arg224Pro	M-718	***
Asp226Asn	V-803	***→***
Sin identificar	V-49	
POLIMORFISMO	Familia	Cambio
Ala236Val	M-422	

Tabla 26 RESUMEN DE FAMILIAS ADRP CON MUTACIÓN IDENTIFICADA

N° total Familias	RHO	RDS- Periferina	ROM1	RP1	NRL	CRX	PRP- Splincing factors	FSC2	IMPD H 1	TOTAL
134-196	33 33/196	3 3/186	2 2/123	6 6/178	2 2/159	1 1/152	9 9/170	1 1/136	4 4/134	61
	17%	2%	2%	3%	1%	1%	5%	1%	3%	35%

Tabla 27 RESUMEN DE FAMILIAS ADDM CON MUTACIÓN IDENTIFICADA

N° total Familias Estudiadas	RDS-Periferina	
28	12	

Estudio en ARRP

Se han estudiado un total de 353 familias informativas con el diagnóstico de ARRP, Amaurosis de Leber (LCA) o ARRP precoz.

Se han analizado 36 genes y 2 loci

El estudio molecular se ha realizado en los NODOS 2 3 y 4.

Tabla 28 RESUMEN DE FAMILIAS ARRP Y LCA INFORMATIVAS CON ESTUDIO MOLECULAR

TOTAL FAMILIAS	S. PABLO	TARRASA	FJD	V ROCIO	LA FE	TOTAL
ARRP	74	28	159	83	9	353

Tabla 29 GENES Y LOCI ESTUDIADOS EN FAMILIAS ARRP Y LCA

GENES	RESPONSABLES	CANDIDATOS	TOTAL
NO MUTADOS	RHO, RDS, ROM1, NRL, PDE-A, RLBP1, RGR, CRBP1, ELOVL4, CRX, MERTK, LRAT 12	RCV1, PDE G, GCAP, SAG, IRBP GABRR1, GABRR2, SMAP1, GICATS, RAB23, HELO1, LENGSIN. RIM1, MPP4, 14	26
MUTADOS	CNCG-A, ABCR, TULP1**, USH2A, CRB1*, PDE-B, RPE65, NR2E3, RDH12, GUCY2D, RPGRIP1, AIPL1, 10	0	10
total	22	14	36
LOCI	RESPONSABLES	CANDIDATOS	TOTAL
	RP12 (1q31)* RP14 (6p21.3)** RP19 (1p21) RP26 (2q31) RP25 (6q)		
total	4		4

No se han encontrado mutaciones en los genes

RHO, RDS, ROM-1, RCV1, PDE- α y PDE- γ , GCAP, IRBP, RLBP1, RGR, CRBP1, SAG, NRL, GABRR1, GABRR2, SMAP1, GICATS ELOVL4 RAB23 HELO1 LENGSIN // RIM1, MPP4, CRX, MERTK y LRAT

Tabla 30.- GENES CANDIDATOS sin Mutaciones (familias ARRP EsRetNet)

Gen	resultado	Enfermedad asociada
GCAP	0/49	
SAG(2q37)	0/49	
RCV1(17p13)	0/54	
IRBP(10q21.1)	0/49	
NRL(14q11)	0/49	ADRP
PDE -γ (17q25)	0/52	
CARREA(Ca)	0/7	
GABRR1(6q)	0/7	

-		
GABRR2 (6q)	0/7	
SMAP1 (6q)	0/7	
GlcATS (6q)	0/7	
ELOVL4 (6q)	0/7	ADDM
SMAP1 (6q)	0/7	
RAB 23 (6q)	0/7	
HELO1 (6q)	0/7	
LENGSIN (6q)	0/7	
RIM1 (6q)	0/7	
MPP4 (6q)	0/7	

En rojo: Genes candidatos que mapean en el Locus RP25

Tabla 31.-GENES RESPONSABLES sin Mutaciones (familias ARRP EsRetNet)

Genes Responsables		Fenotipos asociado en la literatura
RHO	0/153	ADRP (<0,1% en ARRP)
RDS	0/90	ADRP/ADDM
ROM-1	0/79	RP Digénica
RP65	0/72	5% ARRP precoz y grave
RGR	0/92	ARRP y ADRP
RLBP1	0/94	<1% ARRP punctata albescens
CRBP1	0/92	<1% ARRP
PDE-α	0/52	<1% ARRP
CRX	0/51	< 5% LCA dominante y recesiva
MERTK	0/51	<1% LCA/ ARRP precoz
LRAT	0/51	<1% LCA/ ARRP precoz

Únicamente se ha observado:

- Ligamiento con los loci RP25 y RP28 y
- Mutaciones en los genes CNCG-A, ABCR, TULP1, USH2A, CRB1, PDE-B, RPE65, NR2E3, RDH12, GUCY2D, RPGRIP1, AIPL1

ANÁLISIS GENETICO de los Genes:

PDE-B, ABCR, TULP1, CNCG-A, (Ver Memoria de 2003)

USH2A, CRB1, RPE65, NR2E3, RDH12, GUCY2D, RPGRIP1, AIPL1 (Tablas 32 a 38)

Tabla 32 ANÁLISIS GENETICO del Gen USH2A en ARRP

TOTAL FAMILIAS	S.PABLO*	FJD	V ROCÍO	LA FE	Total
USH2A	2/51	10/83	7/70		19/204 (9%)
USH2A (FENOTIPO arrp)					14/ 199 (7%)

Tabla 33 Resultado del ANÁLISIS MUTACIONAL Gen USH2A en ARRP

Mutación Secuencia	Fenotipo
C759F/ c.2135delC	USHER II
C759F/ c.947_954dup	USHER II
C759F	USHER II
c.2299DelG	USHER II
c.2299delG/L1189X	USHER II

c.544_546delAA	ARRP
C759F/C759F	ARRP
G713R	ARRP
C759F/R63X	ARRP
G713R	ARRP
C759F (x3)	ARRP
C759F/ L555V- (IVS7+36-39delGATT)	ARRP
C759F/His752	ARRP
Pro761Arg	ARRP
C759F/ L555V- (IVS7+36-39delGATT- //IVS 10-2 A>G)	ARRP
C759F/ c.2299delG	ARRP
C759F/ His752	ARRP

El análisis del gen USH2A en pacientes ARRP se realizó en el NODO 2

Tabla 34 ANÁLISIS GENETICO del Gen CRB1 en ARRP

TOTAL FAMILIAS	S.PABLO*	FJD	V ROCÍO	LA FE	Total
ARRP	2/49	6/75			8/124 (6 %)
LCA		5/20		1/3	6/23 (26%)
TOTAL	2/49	11/95		1/3	15 /147 (10%)

El análisis del gen CRB1 en pacientes ARRP se realizó en el NODO 2 y en ARRP recoces y LCA (mediante micro-array) en el NODO 4

Tabla 35 Mutaciones del Gen CRB1 en ARRP Y LCA

Mutación	Fenotipo	FAMILIA
Cys948Tyr // Ile1100Thr	ARRP	M 69
Cys948Tyr/Cys948Tyr	ARRP	M 69
Ile1100Pro / Ile1100Pro	ARRP	M 25
478-481 ins G //	ARRP	M 91
Arg905Gln //	ARRP	M 137
lle205Thr //	ARRP	M 310
Cys891Gly//lle1100Thr	ARRP	B 102
962delLeu heterocigosis	ARRP	B 15
Cys896Stop // Cys948Tyr	LCA	LCA 4
478-481 ins G/478-481 ins G	LCA	LCA 10
749delSer/Cys948Tyr	LCA	M 641 LCA 11
Ile205Thr heterocigosis	LCA	M 489 LCA12
611 del AAATAGG	LCA	LCA 19
Cys948Tyr heterocigosis	LCA	RPN77

Tabla 36 ANÁLISIS GENETICO del Gen RDH12 en ARRP

TOTAL FAMILIAS	S.PABLO	FJD	V ROCÍO	Total
ARRP	3/51	3/90	3/49	9/190 (5%)
SRP	0/25	0/14		0/39
total	3/76	3/104	3/49	9/229 (4 %)

(Estudio realizado en colaboración con Andreas Janecke, Innsbruck, Austria)

Tabla 37 Mutaciones observadas en RDH12 y fenotipos asociados

FAMILIA	Alelo 1		Alelo 2		Fenotipo
B-237 (04-134)	L99I	c.295C>A	N34fsX62	c.102ins4	severo
B-16 (93-935)	L99I	c.295C>A	L99I	c.295C>A	severo
B-19 (91-364)	T155I	c.464C>T	T155I	c.464C>T	severo
M-131 (1962)	L99I	c.295C>A	A269fsX270	c.806del5	severo
M-447 (98/207)	L99I	c.295C>A	L99I	c.295C>A	severo
M-874 (04/0552)	R65Q	c.194G>A	?		severo
S-203	L99I	c.295C>A	L99I	c.295C>A	severo
S-217	T155I	c.464C>T	T155I	c.464C>T	severo
S-261	G145E	c.434G>A	M1T	c.2T>C	severo

Dos mutaciones se observaron recurrentemente en los pacientes españoles (L99I c.295C>A; 8 / 17 alelos mutados y T155I c.464C>T; 4/17 alelos mutados).

Los análisis de haplotipos se realizarán para analizar si tienen un origen común en nuestra población.

Todas las mutaciones encontradas se asociaron a fenotipos severos (inicio < 10 años y progresión rápida de la RP)

NR2E3

El análisis del gen NR2E3 en pacientes ARRP con fenotipo "pseudo-retinosquisis" (con estudio del gen XLRS negativo) se realizó en el NODO 2

Se ha identificado la presencia de la mutación G>A en posición 1020 (R311Q), en homozigosis en uno de estos pacientes.

Genes RPE65, GUCY2D, RPGRIP1, AIPL1 en ARRP precoz y LCA

El análisis de estos genes se realizó en el Nodo 4, mediante técnica de microarray. (Asper Bio).

Tabla 38 Familias analizadas con LCA chip

Tipo FAMILIAS	FJD	H LA FE	Total
LCA	20	3	23
ARRP Inicio precoz	31	0	31
ARRP Inicio no precoz	9	0	9
TOTAL	60	3	63

No se observaron mutaciones en ninguna de las 9 familias ARRP de inicio tardío, y se encontró una o las dos mutaciones responsables en 7/23 familias LCA (30%) y 7/31 (23%) familias ARRP de inicio precoz

Tabla 39 Resultados: Mutaciones en 7/23 familias LCA

Familia	Gen	Exón	Cambio de nucleótido	Cambio proteina
LCA-2	RPGRIP1	21	A3341G	Asp1114Gly
LCA-4	CRB1	8	T2688A	Cys896Stop
LUA-4	CRB1	9	G2843A	Cys948Tyr

LCA-10	CRB1	2	478-481 ins G	FS
LCA-10	CRB1	2	478-481 ins G	FS
LCA-11	CRB1	7	2244-47 del ATC	del S749
LOA-11	CRB1	9	G2843A	Cys948Tyr
LCA-12	CRB1	2	T614C	lle205Thr
LOA-12	GUCY2D	10	C2101T	Pro701Ser
LCA-19	CRB1	2	611 del AAATAGG	FS
LCA-19				
RPN 77	RPE65	9	C.963T>G	N321K
KFN 77	CRB1	9	G2843A	Cys948Tyr

Tabla 40 Resultados: Mutaciones en 7/31 familias ARRP DE INICIO PRECOZ

Familia	Gen	Exon	Cambio de nucleótido	Cambio proteína
RP-25	CRB1	9	T3299C	lle1100Pro
	CRB1	9	T3299C	Ile1100Pro
RP-50	GUCY2D	2	C121T	Leu41Phe
RP-61	RPGRIP1	21	A3341G	Asp1114Gly
RP-82	AIPL1	3	A401T	Tyr134Phe
RP-91	CRB1	2	478-481 ins G	FS
RP-137	CRB1	8	G2714A	Arg905Gln
	RPGRIP1	21	A3341G	Asp1114Gly
RP-310	CRB1	2	T614C	lle205Thr
	RPGRIP1	21	A3341G	Asp1114Gly

Tabla 41 % de alelos mutados por subtipo clínico

Alelos mutados detectados	LCA 46	ARRP Inicio Precoz 62	total	ARRP Inicio Tardío
AIPL1	0	1	1	0
CRB1	9	5	14 (13%)	0
CRX	0	0	0	0
GUCY2D	1	1	2 (2%)	0
LRAT	0	0	0	0
MERKT	0	0	0	0
RPE65	1	0	1 (1%)	0
RPGRIP1	1	3	4 (4%)	0
Total	12	10	22	0
%	26%	16%	22%	0%

Tabla 42 ANÁLISIS GENETICO INDIRECTO de los Loci RP25 y RP26 en ARRP

TOTAL FAMILIAS	FJD	S.PABLO	V ROCÍO	LA FE	Total
Lig 2q31-q33 (RP26)	0/23	1/20		0/5	1/48 (2%)
Lig 6cen-q15 (RP25)	3/23	0/20	4/9	0/9	7/51 (14%)

Resultados del estudio mutacional en 199 Familias ARRP

Tabla 43 RESUMEN DE FAMILIAS ARRP CON MUTACIÓN / locus IDENTIFICADO

Nº total Familias Estudiadas	PDE-B	ABCA4	TULP- 1	CNGA1	USH2A	CRB1	RPGRIP	AIPL1	GUCYD
46-199	6/134	4/55	5/51	1/46	14/199	15/147	2/63 (+2DIGE)	1/63	1/63 (+1DIGE)
	4%	8%	10%	2%	7%	10%	3%	1,5%	1,5%
	RPE65	RDH12				Loci RP25	Loci RP26		٤?
		9/190				1/48	7/51		
	(1DIG	5%				2%	14%		32%

Estudio en familias XLDR:

XLRP, CHM, XLRS y Enfermedad de NORRIE

Se han estudiado molecularmente <u>99 familias</u> inicialmente diagnosticadas como <u>DR</u> <u>XL:</u>

- 47 Retinosis Pigmentarias (XLRP),
- 16 sospechas de Coroideremia (CHM), confirmada en 9 casos
- 26 sospechas de Retinosquisis ligadas al X (RS), confirmada en 22 y
- 10 sospechas de Enf. Norrie (NDG) o VitreoRetinopatía Exudativa ligada al X, confirmada en 5.

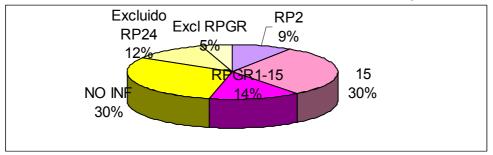
El estudio molecular se ha realizado en el NODO 4 (Fundacion Jiménez Diaz)

Tabla 44 ANÁLISIS molecular en XLDR: 99 Familias analizadas

TOTAL FAMILIAS XL: Sospecha	S.PABLO	TARRASA	FJD	V ROCIO	LA FE	Total Confirmación diagnóstica
XLRP	5*	0	37	5***	0***	47/47
СНМ	0**	0	16	0*	0	9/16
XLRS	0****	0	26	0	0	22/26
Norrie	0	0	10	0	0	5/10
TOTAL	5	0	89	5	0	83/99

^{*1} FAMILIA COMUN CON FJD//**2 FAMILIAS COMUNES CON FJD// ***3 FAMILIAS COMUNES CON FJD

XLRP y Genes RP2 y RPGR


Se ha completado el análisis mutacional del gen RP2, y el gen RPGR (exones 1-15 y exon transcrito de retina ORF15) en 43 familias.

Los resultados del análisis mutacional se muestran en las figuras y tablas siguientes.

Tabla 45.- Resultados Estudio Mutacional en 47 familias XLRP

RESULTADO	N° FAMILIAS	Gen RPGR		Gen RP2	TOTAL
Estudio Completo	43	Otros	ORF-	RP2	Distribución
		Exones	15		por genes
No Mutación	20/43				20
Mutación RPGR	19/43	6	13		19
Mutación RP2	4/43			4	4
En Estudio	4				
TOTAL Familias	47				43

Análisis Mutacional en 43 familias XLRP: Distribución por genes

^{***8} FAMILIAS COMUNES CON FJD

Tabla 46 ANÁLISIS GENETICO y mutaciones del Gen RP2 (XLRP)

FAMILIAS XLRP	Total
	4/43 (10%)
Mutaciones	Ins T299 (Val 100 fs Stop)
	212G >T (Glu18Stop)
	401C >T (Gln134Stop)
	Ser 140 Phe

Tabla 47 ANÁLISIS GENETICO y mutaciones del Gen RPGR (XLRP)

FAMILIAS XLRP	Total] ` `
(Ex 1-15)	6/43	
ORF-15	13/43	
TOTAL	19/43	
REGIÓN	MUTACIONES	Total
(Ex 1-15)	T99N	6
	IVS1 13 -2 A>G	
	Lys 373 X	
	del T 545 (2)	
	del 604-622	
ORF-15	Orf15 Del AG 651-652,	13
	Glu219fsTer250 (4)	
	Orf 15 N493K	
	Orf15 Del AG 481-482 , Arg	
	162fsTer184 (3)	
	Orf15 InsGA 567-568	
	Orf15 Del 720-721, Glu242fsTer 250	
	del CC 1211-1212	
	ORF 15 Ins o Del	
	ORF 15 828_831 Del GAAG	

MUTACIONES RPGR

- Origen

Las mutaciones Del AG 481-482 y Del AG 651-652 se presentaron recurrentemente en 3 y 4 familias respectivamente. (Fig)

Estos cambios han sido reportados previamente en otras series de la literatura, siendo asimismo las mas frecuentemente observadas en población norteamericana. (Ver Tabla) Sharon et al; *Am J Hum Genet. 2003*

Queda por determinar si en cada caso el origen de la mutación es común, habiéndose producido ancestralmente una sola vez, o por el contrario su frecuencia está ocasionada por una recurrencia del evento mutacional, en cada familia.

Para ello se va a proceder al análisis de los haplotipos ligados a cada mutación, durante la próxima anualidad, aunque el origen similar geográfico (Barcelona para Del AG 481-482 y Granada para Del AG 651-652, junto con el análisis preliminar podrían indicar un origen ancestral común. (Fig)

El resto de las mutaciones se presentaron en familias aisladas.

- Tipo de Mutación

En todos los casos, excepto en 1 (T99N), se produjeron alelos nulos que generaron un mRNA más corto un codon stop prematuro aunque las mutaciones fueron de distintos tipos (pequeñas inserciones y deleciones tipo frameshift, mutaciones nonsense y de la región de splicing)

Las mutaciones asociadas a RD descritas hasta ahora en el exón ORF15 exon causan cambio en la pauta de lectura (frame shift), mientras que las deleciones e inserciones in-frame se piensa que no suelen ser patogénicas

- Localización de la Mutaciones

13 de las 19 mutaciones afectaron a la región ORF15. En otras series de la literatura también se observa una mayor proporción de mutaciones acumuladas en esta región. Ello es debido a que el exon ORF15 tiene una región rica en purinas y altamente repetitiva lo que la convierte en una región hipermutable (Hot spot mutacional)

Coroideremia y Gen REP-1

Se han analizado 16 familias con sospecha clínica de CHM.

- En 6 familias se ha descartado el ligamiento al locus CHM
- Una familias se encuentra en estudio y sólo ha sido posible realizar estudios a nivel del DNA ya que de momento no hemos podido obtener muestras de RNA

Tabla 48 Resultados Estudio Mutacional en 16 familias con sospecha de CHM

RESULTADO	Nº FAMILIAS
No Ligamiento a CHM	6
Ligamiento al locus CHM	9
Mutación	8
En Estudio	1
TOTAL Familias	16

Tabla 49 ANÁLISIS GENETICO y mutaciones del Gen REP-1 (CHM)

I abia +3 A	abia 43 ANALISIS GLINETICO y mutaciones dei Gen Rep-1 (Chini)						
FAMILIA	A NIVEL DE DNA	A NIVEL DE RNA	A NIVEL DE PROTEÍNA				
CHM-22	555-556 Del <i>AG</i>	555-556 Del <i>AG</i>	Proteína truncada				
	$(K_{177}fsX_{182})$						
CHM-23	1048 C>A (5 ₃₄₀ X)	1048 C>A	Proteína truncada				
CHM-288	46,X,†(X;4)(q21;p16)	En el DerX solo se expresan los primeros exones	Proteína truncada				
CHM-317	En estudio	Splicings alternativos	Proteína truncada				
CHM-411	En estudio	Splicings alternativos	٤٤				
CHM-695	٤٦	ć?	٤٤				
CHM-729	IVS 3+1 G >A	Skipping del exón 3	Proteína truncada				
CHM-747	Gran Del.	Ausencia	Ausencia de proteína				
CHM-779	Del de por lo menos el	Ausencia del ex9	Posible perdida de				
	ex9		función				

Todas las mutaciones encontradas en el gen REP-1 tanto en población española, como en otras series producen siempre cambios en el RNA y proteínas truncadas.

Retinosquisis y gen XLRS-1

Se ha completado el análisis del gen XLRS-1 en un total de 26 familias con sospecha clínica de retinosquisis :En 4 familias se ha descartado el ligamiento al locus XLRS

- En 18 familias se ha identificado la mutación patogénica: en el gen XLRS-1
- Y en las 4 familias restantes no se ha encontrado ninguna mutación

En las 8 familias sin mutación (4 no ligadas y 4 sin excluirse ligamiento) se está procediendo al estudio del gen NR2E3, responsable de S de Goldmann Favre y con un fenotipo similar a la retinosquisis.

Tabla 50.- Resultados Estudio Mutacional en 26 familias con sospecha de XLRS

RESULTADO	Nº FAMILIAS
Excluido XLRS por ligamiento	4*
No Excluido XLRS por ligamiento	22
Mutación	18 / 22
No Mutación	4* / 22
TOTAL Familias	26

En estudio mutacional para NR2E3

Tabla 51 Análisis Genético y mutaciones del Gen XLRS-1

Tabla 51 Analisis Genetico y mutaciones del Gen XLRS-1								
Familia XLRS	Exon Mutado	Mutación Identificada	Tipo	Origen	Otras Series			
43	Exón 4	E72K (G214A)	Missense	De novo madre	214G>A (50 veces)			
93	Exón 4	E72K (G229A)	Missense	Heredada				
104	Exón 4	E72K (G229A)	Missense	Heredada				
108	Exón 4	Q80X (C238T)	Nonsense	"de novo"	No reportada			
44	Exón 3	Y89C (A266G)	Missense	Heredada	266A>G (3 veces)			
102	Exón 5	L137P (T410C)	Missense	55	No reportada			
95	Exón 5	R141C (C421T)	Missense	Heredada	421C>T (12 veces)			
30	Exón 5	Q154R (G461A)	Missense	Heredada	Presente estudio			
70	Exón 5	Q154R (A461G)	Missense	Heredada				
97	Exón 5	Q154R (A461G)	Missense	Heredada				
143	Exón 5	Q154R (A461G)	Missense	55				
145	Exón 6	R197C (C589T)	Missense	55	596T>C (3 veces)			
112	Exón 6	R209H (G626A)	Missense	55	626G>A (4 veces)			
27	Exón 6	R213Q (G638A)	Missense	Heredada	638G>A (2 veces)			
29	Exón 6	E215Q (G643C)	Missense	Heredada	643G>C (2 veces)			
101	Exón 6	E215V (A644T)	Missense	Heredada	No reportada			
107	Exón 6	L216P (T647C)	Missense	Heredada	647T>C (1 vez)			
124	Exón 6	Ins C	Nonsense	Heredada	No reportada			

- Origen Geográfico

Se identificaron 14 mutaciones en 18 familias distintas, cuyo origen geográfico se muestra en la figura.

- Origen Familiar

En 14 de ellas pudo establecerse el origen mutacional, siendo heredada en 12 y apareciendo como una mutación de novo en dos familias, (en el paciente en una familia y en la madre de 2 afectos en la otra familia)

Las mutaciones E72K (G229A), y Q154R (G461A) se presentaron recurrentemente en 3 y 4 familias respectivamente. (Fig)

- E72K (G229A)

Esta mutación parece haberse originado a partir de sucesos mutacionales independientes en las 3 familias, según se deduce de los haplotipos ligados en cada una de ellas (figura), junto con el hecho de que en una de las familias se ha confirmado el origen de novo en una madre portadora.

Esta mutación es, con mucho, la mas frecuente en el gen XLRS, habiéndose reportado en 50 familias de todo el mundo.

Por todo lo anterior el nt G229 parece ser un punto caliente para mutación en este den.

- Q154R (G461A)

Esta mutación exclusivamente descrita en población española, parece sin embargo haberse originado ancestralmente por un único *suceso mutacional* al menos en 3 de las 4 familias, ya que el haplotipo ligado en cada una de ellas (figura) ha sido el mismo (177, 266,177). Todas ella proceden del área norte de España.

El resto de las mutaciones se han presentado cada una en una familia aislada.

Todo lo anterior parece indicar que el gen XLRS presenta una alta tasa mutacional, existiendo con frecuencia mutaciones de novo o recientes y que la mutación Q154R (G461A) es de origen español, ya que solo ha sido reportada por nosotros, en 4 familias, de origen probablemente único.

Enfermedad de Norrie, Vitreo-Retinopatía familiar ligada al X y gen NDG

Se han analizado 10 familias con sospecha clínica de Enfermedad de Norrie.

Se ha descartado el ligamiento al locus NDP en 2 de ellas (N4 y N8), y asimismo el estudio mutacional directo fue negativo en ella y en otras 3 (N1, N6, N7).

Todos estos casos podrían tratarse de vitreo-retinopatias o no hereditarias (caso N6) o ligadas a un locus autosómico (N7, N8) u otras distrofias retinianas ligadas al X.

Se ha podido identificar la mutación responsable en 5 de las 6 familias que mostraron co-segración en el análisis indirecto. (Tabla)

Tabla 52.- Resultados Estudio Mutacional en 10 familias con sospecha de ND

RESULTADO	N° FAMILIAS
Excluido NDG por ligamiento	2
No Excluido NDG por ligamiento	8
Mutación	5
No Mutación	3
TOTAL Familias	10

Tabla 53 Análisis Genético y mutaciones del Gen NDG

	Mutación	Tipo de mutacion	Exon
Familia ANF7	V89fsX101 (654_658 del TGTCG)*	nonsense, "de novo"	3
Familia ANF8	Y120X (776 C→A)*	nonsense	3
Familia XLDM 46	R121Q (778 G→A)	missense	3
Familia N2	R38C (529 C→T)*	missense	2
Familia N5	R38C (529 C→T)*	missense	2

^{*}Mutación no reportada

Estudio en familias S Usher:

Se han analizado genéticamente 9 loci (5 genes) en 68 familias con S Usher tipo1. El estudio molecular se ha realizado en el NODO 6 (hospital La Fe)

Tabla 54. ANÁLISIS GENETICO del Síndrome de Usher TIPO 1

TOTAL FAMILIAS	FJD*	LA FE	HSP	Total
Usher 1				
1A				
1B (MYO7A)	10	9	2	21 (45%)
1C (HARMONINA)				
1D (CDH)	2	1		3 (6%)
1E				
1F (PCDH15)				
1G				
Candidato: MYO3A	1			1 (2%)
3 (CLARIN)		1		2 (4%)
SANS	1	1		2 (4%)
¿ ?	8	11		23 (49%)
Total estudiadas	22	23	2	47
En estudio	7	1	11	19
Total	29	24	13	68

Tabla 55.- Resultados Genes Myo7A, CDH23, Myo3A, Clarín y Sans (Usher tipo 1)

	MALITA CIÓN		
GEN	MUTACIÓN	Alelos Mutados	Familias mutadas
10/074	T704F044		Illutadas
MYO7A	T724FS Homoz	2	
	Tyr1719Cys heteroz	1	
	Cys628X Homoz	2	
	A2009FS delG Homoz (2)	4	
	Glu170Lys heteroz	1	
	L1484F heteroz L1484F / Q493P	2	
	del15pb1347-1351// R1373X	2	
	R336H hetero	1	
	G214R / E1327K	2	
	G214R hetero	1	
	G214R / 1614_1615delAG	2	
	Gln821X homoz	2	
	Gln821X Heteroz (2)	2 2	
	Lys1080stop/ Glu1170Lys		
	Ala397Asp heteroz	1	
	K268R hetero	1	
	Thr1566Met heteroz	1	
	Tyr1719Cys heteroz	1	
	281_282insGATT hetero / P1244L hetero	2	
		32/94	21/47
		(34%)	(45%)
CDH23	P1206R heteroz	1	
	Q1496 heteroz	1	
	IVS20+1G>A // IVS45-9G>A	2	
MYO3A	A1090T // IVS1 -18 G>A		
CLARIN	C40G homo		
	Y63X homo		
SANS	G338R heteroz (2)		

Se ha realizado estudio molecular en 124 familias con S Usher tipo 2. El estudio molecular se ha realizado en parte en el NODO 2 (hospital San Pablo) y principalmente en el NODO 6 (Hospital La FE)

Tabla 56. ANÁLISIS GENETICO del Síndrome de Usher TIPO 2

TOTAL FAMILIAS Usher 2	S.PABLO*	FJD*	V ROCIO*	LA FE*	Total
2 A (Usherina)	9	30	4	6	49/ 124
Total estudiadas	25	66	10	23	(39,5%)
En estudio	13	12	4	3	32
Total	38	78	14	26	156

^{*}Varias familias compartidas por varios NODOS

tabla 57.- Mutaciones encontradas en 49 familias S Usher 2

MUTACIÓN	Nº casos con mutación					
2299delG Homoz	8					
2299delG hetero	8					
2299delG / Glu1492X / Glu478Asp (polim?)	1					
2299delG // C3251R	1					
2299delG (heter) // IVS12+5A>G	1					
2299delG (heter) // 921-922ins CAGC	1					
2299delG heter // L1572F hetero	1					
2299delG heter // L1572F hetero // T3571M	2					
2299delG // A2249D	1					
2299delG // T3571M	1					
2299delG // R2875Q // C3267R	1					
2299del G // I2169T	1					
2299delG // C759F						
C759F / ?	3					
C759F // 2431delAA	1					
C759F// 2135delC	1					
C759F // 8431del CCTA	1					
C759F // nt847^54dup 8pb /	1					
Deleción exon9 - exon 14 homocigosis	1					
1211 4del / ?	1					
Tyr506X / ?	1					
2431_2del / Arg34X	1					
D778Y // R2354H	1					
2898delG Homoz	1					
239-240 ins GTAC // 10273insTT	1					
nt 377 (delgt) Exon 2	1					
T972FS	1					
G713R	2					
2431delAA/ 2135delC	1					
3369delT hetero	1					
C575Y	1					

Síndrome de Bardet-Biedl

El estudio molecular se ha realizado en el NODO 1 (Universidad de Vigo)

Tabla 58. ANÁLISIS GENETICO del Síndrome de Bardet Biedl

TOTAL FAMILIAS	VIGO	S.PABLO	Tarrasa	FJD	V ROCIO	LA FE	Total
Estudiadas	0	11	0	19	3	2	35
En estudio	4	4	1	0		0	
Total	4	15	1	19	3	2	44

Se han estudiado 35 familias que cumplían los requisitos detallados en el protocolo clínico que se ha elaborado de Síndrome de Bardet-Biedl. (133 individuos, entre afectos y familiares). Hasta el momento se ha puesto en marcha el análisis molecular del gen BBS6 (MKKS) y se ha priorizado el análisis de los genes BBS1 (17 exones) y BBS2 (17 exones) puesto que según la literatura presentan mayor grado de implicación en las familias analizadas.

Hasta ahora se ha detectado una implicación del gen MKKS BBS6 en un 7% de las familias estudiadas, encontrándose dos mutaciones en un mismo paciente y un cambio intrónico en otra familia que nos hace sospechar un splicing alternativo provocando un acortamiento de la proteína codificada.

Enfermedad de Stargardt

Se ha estudiado el gen ABCA4 en 85 familias: 54 afectas de enfermedad de Stargardt, 9 distrofias Conos>bastones 13 retinosis pigmentarias y 9 familias con otras patologías.

El estudio molecular se ha realizado en los NODOS 1 y 4.

Gen Analizado	N° Familias	Tipo de DR
	54	Stargardt
ABCA4	9	Dist. c-b
	13	RP
	9	Otras
	85	

Mediante el análisis de haplotipos que se ha realizado en las 85 familias, se ha descartado el gen ABCA4 como responsable de enfermedad en 4 familias en las que se ha observado que los haplotipos no cosegregaban con la enfermedad.

Para la enfermedad de Stargardt se utilizaron las técnicas de microarrays para detectar 430 mutaciones descritas en el gen ABCA4 responsable de esta patología. Se han incluido los pacientes de las 81 familias restantes:

pacientes con enfermedad de Stargardt, distrofia de conos y bastones, retinosis pigmentaria autonómica recesiva y distrofia macular.

Tabla 59.- Resultados del análisis del gen ABCA4 mediante microarray en STG.

Diagnóstico	Nº Fam	Sin Mutación	Con 1 Mutación	Con 2 Mutaciones	Alelos Mutados	Familias Mutadas
STG	52	13	16	23	62/104 (60%)	39/ 52 (75%)
DCB	9	2	4	3	10/18 (55%)	7/9 (78%)
RP	12	9	3	0	3/24 (37,5%)	3/12 (75%)
Otras	8	6	2	0	2/16	2/8
TOTAL	81	30	25	26	77/162 47%	51/81 63%

a) Frecuencia y tipos de mutaciones

El estudio de nuestros pacientes mediante el chip de ADN ha permitido identificar los 2 alelos mutados en 26 casos (26/81), la detección de sólo 1 de los alelos mutados se produjo en 23 pacientes (23/81) y, por último, en 32 pacientes no se identificaron ninguna de las 2 mutaciones responsables de la enfermedad (32/81).

Tabla 60.- Frecuencia Mutacional del gen ABCA4 mediante microarray en STG.

N° pacientes	Cromosoma s	Alelos asociados	Alelos	Alelos más	frecuentes	Distribución
	analizados	a Stargardt	complejos			de los alelos
				R1129L	11,11%	2→ 32,10%

81	162	76 (46,91%)	12	G1961E	4,93%	1→ 28,40%
				2888 del G	4,32%	0→ 39,50%

En la muestra que conforman las 81 familias, se han identificado un total de 38 mutaciones diferentes. Las frecuencias para estos cambios son similares a las identificadas en el resto de Europa, excepto por 2 diferencias:

- la mutación más frecuente en población europea es el cambio G1961E, al que se le atribuye un "efecto fundador". En población española aparece únicamente en un 4.93% de los casos.
- Sin embargo, la mutación más frecuente en población española es R1129L, que aparece con una frecuencia alélica del 11,11% (para los pacientes recogidos en este trabajo).

Se ha podido observar que la mutación más frecuente en nuestra población es el cambio R1129L, que aparece en 14 pacientes (en 4 de ellos, se produce en homozigosis). Además, el análisis de haplotipos permitió identificar que la mayor parte de los pacientes portadores de dicha mutación comparten el mismo haplotipo, por lo que se puede sospechar un posible efecto fundador en población española.

b) Eficiencia del microarray

De forma rutinaria, el array detecta entre el 54-65% de los alelos asociados a enfermedad, en pacientes con Stargardt elegidos al azar y que no han sido analizados previamente, dependiendo de la composición étnica de la muestra y del grado de caracterización clínica y molecular de la misma (Zernant et al. 2002).

En nuestros pacientes, se ha observado que se identifican con mayor frecuencia los 2 alelos asociados a enfermedad en los pacientes clínicamente diagnosticados de Stargardt. Sin embargo, en el resto de las patologías oculares analizadas por el microarray, el porcentaje de detección de uno o de ambos alelos mutados es sensiblemente menor.

c) Origen de las mutaciones

se observado que la mutación más prevalente en nuestra población (R1129L) aparece principalmente en el centro y norte de España, concretamente, en Castilla y León, Castilla La Mancha, País Vasco y Cataluña. Sin embargo, no está presente en Galicia, Andalucía ni en los archipiélagos.

8. Identificación de Nuevos Genes y Loci

El NODO 5 (HVR) está erfinando la region del locus RP25 y ha continuado con la caracterización molecular de los genes candidatos de la región de 6q.

La ausencia de mutaciones patogénicas en este análisis excluye, al gen *RIM1* como responsable del desarrollo de RP en las familias con RPAR incluidas en este estudio, indicando que *CORD7* y *RP25* no son variantes alélicas del mismo gen.

El análisis de nuevos genes candidatos, tanto por función, como por su localización dentro del locus *RP25*, permitirá encontrar el gen responsable del fenotipo RP en las familias ligadas a dicho locus y contribuir al mejor conocimiento de las bases fisiopatológicas de las degeneraciones hereditarias de retina. El conocimiento de la etiopatogenia de la enfermedad es la mejor base para un tratamiento adecuado de la misma.

9. Caracterización Fenotípica de Formas Raras y Sindrómicas de DR

Se ha realizado el estudio clínico, citogenético y/o molecular de varias familias afectas de formas sindrómicas infrecuentes de RP, en colaboración con centros internacionales donde se realizan estos tipos de estudio.

Tabla 61 Estudio Clínico y Genético de formas de RP sindrómicas

Diagnóstico	Estudio Clínico	Estudio Citogenético	Estudio Molecular	Resultado
S. Alagille	1 familia			
	+	Normal		En estudio
SCA7	8 familias	No	+ expansiones CAG	
				19 individuos entre 30 y 48 repeticiones
S Senior Locken	2/3 familias	normal	Prof. Hildebrandt	Gen NPHP NORMAL
	1/3	Paciente 45,X/46,XX/47,XXX	Prof. Hildebrandt	Gen NPHP NORMAL
S Sjögren Larssen	1 familia	Normal		FALDH (T317G)
Ceroid Lipofuscinosis	3 familias			
	+	Normal	No colaboran	
Mitocondrial RD	3/4 familias	Normal	Prof Humphries	NORMAL
	1/4**	Inv cr 10	Prof Humphries	NORMAL
			Prof J Montoya	DNA mit normal
RP + R Mental*	Caracterización clínica	Normal		
S Mulibrey	Caracterización clínica	Normal	Finlandia	NORMAL

*SJOGREN LARSSEN.

En esta familia se ha identificado una mutación (T317G) en el gen FALDH, presente en homozigosis en ambos pacientes afectos y en heterozigosis en ambos progenitores

**RP ASOCIADA A S. MELAS

En una familia con una inversión pericéntrica del cr. 10, una de las mujeres portadoras era una paciente afecta de RP, sordera, convulsiones y deterioro cognitivo. (I Lorda-Sanchez et al, Genet Counseiling (2000,11(3):261-265)

***RP ASOCIADA A BRAQUIDACTILIA Y RETRASO MENTAL

En una familia con dos pacientes afectados se ha descrito un nuevo síndrome caracterizado por talla corta, braquidactilia y retraso mental (I Lorda-Sanchez et al, Ophthalmic Genetics (1999) 20(2): 127-131).

10. Caracterización Genotipo-Fenotipo

Los estudios de la relación fenotipo-genotipo de los pacientes en los que se han identificado mutaciones en los genes analizados se detallan en las publicaciones correspondientes que se citan en la Hoja de cálculo y los anexos y apartados correspondientes.

Algunos de estos resultados ya se comunicaron en la memoria de 2003:

RP1; CRB1, Coroideremia, Ush2, etc)

Se resume a continuación algunos de los nuevos hallazgos y aún no publicados (Ver Tablas 18, 21, 33, 34) (Mutaciones de Rodopsina Correlación Genotipo Fenotipo; Mutaciones de RDS/ Periferina y Fenotipos asociados; ANÁLISIS MUTACIONAL Gen USH2A en ARRP; ANÁLISIS GENETICO del Gen CRB1 en ARRP)

Tabla 62.- Hallazgos clínicos en las familias con mutación en RDS

	- rama_gee emmeee em iaie			
Mutación	Fenotipo	Inicio ↓AV	Evolución: Edad con Agudeza Visual <1/10	Observaciones
Gly208Asp	ADRP no clasificada	Variable 2ª-4ªdécada	CL 6ª década	Expresión Variable
Asp173Val	ADRP	1ª década	CL >4ªdécada	Cataratas precoces
Pro216Ser	ADRP	1ª década	5ª- 6ª década	
Tyr141His	DM Viteliforme Adulto	40 años		Expresión Variable Progresión Lenta
Arg142Trp	D Coroidal Areolar Central	35 años	50 años	
Arg142Trp	D Coroidal Areolar Central	35 años	CL 5 década	
689delT	D Coroidal Areolar Central	40–45 años	50 años	
Arg172Trp	D Coroidal Areolar Central	40 años	60 años	
Arg172Trp	D Coroidal Areolar Central	35-55 años	60-75 años	
Pro195Leu	D Coroidal Areolar Central	25 años	37 años	
857 del17	D Patrón	50-70 años	55-75 años	Expresión Variable Progresión Lenta
Cys214Tyr	D Patrón	35 años		Progresión Lenta

Tabla 63: Familias con mutación en NDP y fenotipos asociados.

Familia	Mutación	Fenotipo	Características retinianas			
ANF-7	V89fsX101 " <i>de novo</i> " (654_658 del TGTCG)	Norrie	Microftalmia unilateral, cataratas, sordera neurosensorial, retraso mental.			
ANF-8	Y120X (C776A)	Norrie	Microftalmia, cataratas, phthisis bulbi, opacidad corneal, sordera, bajo coeficiente intelectual.			
XLDM-46	R121Q (G778A)	VREF	Ceguera congénita, phthisis bulbi.			
ND-2	R38C (C529T)	VREF	Afectación oftalmológica.			
		PHPV	Ceguera desde los 5 años de edad.			
		VREF	Ceguera desde los 2 años de edad, conserva buena visión en su ojo derecho.			
ND-5	R38 <i>C (C</i> 529T)	VREF	Afectación oftalmológica; existe un varón con mutación asintomático.			

abla 65 : Familias clínicamente diagnosticadas de Retinosquisis; mutación responsable y fenotipo manifestado.

Mutación	Familia	Edad de inicio	Edad actual	Fondo de ojo	A.V. OD/OI	ERG	C.V.
E72K "de novo"	XLRS-43	4 meses		TÍPICO	0,2	Muy reducido	
E72K	XLRS-93	12 años		Típico	0,5		Normal
E72K	XLRS-104	14 años		TÍPICO	0,2 / 0.1	Disminución amplitud onda b	
Q154R	XLRS-70	1 año		TÍPICO		Onda b disminuída	
Q154R	XLRS-30	18 meses		TÍPICO			
Q154R	XLRS-97	1-2 años		TÍPICO	0,1	Disminución amplitud onda b	
Q154R	XLRS-143	2 años		Squisis macular y periférica.	0,1	Disminución amplitud onda b	
Q80X " <i>de novo</i> "	XLRS-108	2-3 años		Microquistes en mácula, velos vítreos.	0,2	Disminución amplitud onda b	
У89 <i>С</i>	XLRS-44	10 años		TÍPICO	0,1	Onda b inexistente	Escotoma absoluto
L137P	XLRS-102	6 años		TÍPICO	0,32	disminución amplitud onda b	
R141C	XLRS-95	4-5 años		TÍPICO	0,1	onda b→ inexistente	Muy disminuído
579_580 ins <i>C</i> H194fsX263	XLRS-124	7-8 años		RS desde la infancia.	Disminuída	Alterado	Disminuído
R197C	XLRS-145	2-4 años		Squisis macular.	0,5 /0,4	Amplitud onda b disminuída	
R209H	XLRS-112	congénito		Persistencia de vítreo primitivo, RS desde la infancia	0,05/0,02		
R213Q	XLRS-45	3-5 años		Típico	0,1		Muy disminuído
E215Q	XLR5-29	5 años		Hemorragia del vítreo, microquistes en ambas máculas, papilas y vasos normales, sin pigmento en EPR.	0,2 / 0,1	Onda b inexistente	Escotomas relativos
E215V	XLRS-101	10-12 años		Lesión macular bilateral.	0,4 / 0,3	Alterado	
L216P	XLRS-107	13 años		Squisis macular, velos vítreos.	0,2 / 0.3	Disminución amplitud onda b	

Leyenda: A.V.: agudeza visual; OD/OI: ojo derecho/ojo izquierdo; ERG: electrorretinograma, C.V.: campo visual.

Tabla 66: Fenotipos en 28 familias,con 2 alelos mutados identificados de ABCR

Fenotipo	N° de familia	Edad de inicio	Mutación 1	Mutación 2				
,		FS/FS						
STG	ARDM-79	8 años	2888 del <i>G</i> FS	2888 del <i>G</i> FS				
Distrofia c-b	ARDM-86	8-9 años	2888 del <i>G</i> FS	2888 del <i>G</i> FS				
Missense/FS								
Distrofia c-b	ARDM-133	8 años	L11P	2888 del <i>G</i> FS				
STG	ARDM-22	12 años	L2060R	2888 del <i>G</i> FS				
CTC	4DDM 1E	11 . ~	G863A	2000 11656				
STG	ARDM-15	11 años	R1055W	2888 del <i>G</i> FS				
STG	ARDM-61	12 años	R1129L	deleción				
STG	ARDM-138	19 años	G863A	4537ins C FS				
			R943Q					
		Missense/Splice						
STG	ARDM-76	9 años	R1129L	V256V or Splice				
STG	ARDM-39	10 años	E1885K	G IVS +5A Splice				
STG	ARDM-88	16 años	P1380L	G IVS+5A Splice				
STG	ARDM-57	15 años	R1129L	G1961E				
				C IVS +21T Splice G1961E				
STG	ARDM-60	17 años	R602W	C IVS +21T Splice				
		Missense/Missense						
				R152Q				
STG	ARDM-17	8 años	R2107P	R2107H				
				R1108C				
STG	ARDM-14	5 años	R152Q	R152Q				
			R2107H	R2107H				
STG	ARDM-110	8 años	R1108 <i>C</i>	<i>G</i> 1961E R2107H				
				C1490Y				
STG	ARDM-116	11 años	R1108 <i>C</i>	R2107H				
cTC	45544 67	47 ~ .	D44001	R1640W				
STG	ARDM-96	17 años	R1129L	W1408R				
STG	ARDM-111	18 años	R1129L	R1129L				
STG	ARDM-119	19 años	R1129L	R1129L				
STG	ARDM-128	19 años	R1129L	R1129L				
STG	ARDM-47	21 años	R1129L	R1129L				
STG	ARDM-82	15 años	R1129L	E1122K				
STG	ARDM-66	17 años	R1129L	L1940P				
STG	ARDM-62	39 años	R1129L	<i>G</i> 19775				
STG	ARDM-31	40 años	R1129L	S1642R				
STG	ARDM-72	12 años	I156V	R602W				
STG	ARDM-64	15 años	R212C	G19775				
Distrofia c-b	ARDM-126	10 años	<i>G</i> 19775	<i>G</i> 19775				

Tabla 67.- Hallazgos clínicos en las familias con mutación en SCA7

FAM.	ORIGIN	PATIENT	SEX	PRESENT-AGE	PRESENT- CLINICAL STATUS	SYMPTOM AND AGE OF ONSET	REPEATS
1 A	GUADALAJARA	1:1	F	80 años	Ataxia/ Disartria/ VisionNormal/ Disfuncion Cognitiva	Ataxia (7 decada)	٤?
1 A	GUADALAJARA	II:1 (son of I:1)	M	54 años	Ataxia/ Disartria/ VisionNormal/ Disfuncion Cognitiva	Ataxia (5 decada)	36
1 A	GUADALAJARA	II:2(son of I:1)	M	Died 50 años	Wheelchair (40y)/ Blidness (50y)	Deficit Visuale (2 decada)	42
1 A	GUADALAJARA	III:8 (son of II:1)	M	21 años	Ataxia/ Disartria/ Mala Vision	Deficit Visual (2 decada)	38
1 A	GUADALAJARA	111:3	M	36 años	Ataxia/ Visual Impaiment	Ataxia (2 decada)	36
1 B	GUADALAJARA	1:1	M	69 años	Ataxia/ Disartria/ Normal Vision	Ataxia (7 decada)	30
1 C	GUADALAJARA	1:1	F	68 años	Ataxia/ Disartria/ Deficit Visual	Ataxia (5-6 decada)	31
1 C	GUADALAJARA	II:1	M	33 años	Ataxia/ Disartria/ Deficit Visual	Ataxia (3 decada)	35
1 C	GUADALAJARA	11:2	M	45 años	Ataxia/ Disartria/ Deficit Visual	Ataxia y Deficit Visual (3 decada)	38
1 C	GUADALAJARA	II:1 (son of II:2)	M	Died 5 años	Alter aci on Cer ebel osa	2 años	٤?
2 A	GUADALAJARA	1:1	F	58 años	Ataxia	Ataxia (6 decada)	33
2 A	GUADALAJARA	II:1 (son of I:1)	M	22 años	Ataxia/ Disartria/ VisionNormal	Ataxia (2 decada)	48
2 B	GUADALAJARA	1:1	M	58 años	Sillaruedas(58a.)/ Disartria/ Deficit Visual	Deficit Visual (3 decada)	36
2 B	GUADALAJARA	II:1 (son of I:1)	M	Died 7 años	Alter aci on Cer ebel osa	3 años	٤?
3	GUADALAJARA	1:1	F	73 años	Ataxia/ Disartria/ Normal Vision	Ataxia (6 decada)	
3	GUADALAJARA	II:1 (son of I:1)	M	43 años	Ataxia/ Disartria/ Deficit Visual	Ataxia (2 decaede)	42
4	BURGOS	1:1	F	35 años	Ataxia/ Disartria/ Deficit Visual	Ataxia (3 decada)	46
5	AVILA	II:1	F	70 años	Ataxia/ Disartria	Ataxia (7 decada)	30
5	AVILA	111:5	F	37 años	Ataxia/ Disartria/ Deficit Visual	Ataxia (4 decada)	35

11. Generación de grupos homogéneos de pacientes, aptos para futuros ensayos terapéuticos

Objetivo para el 3er año

12. Diseminación de la información entre pacientes, organizaciones, profesionales sanitarios, investigadores, autoridades sanitarias y centros clínicos en España

Entre Octubre de 2003 y Octubre de 2004, se han realizado las siguientes actividades:

Información a Asociaciones de Pacientes:

- RETINA MADRID y Fundación Jiménez Díaz. Madrid, 12 y 13 de marzo de 2004.
 Organización de la V JORNADA SOBRE ENFERMEDADES HEREDITARIAS DE LA RETINA.
- RETINA MADRID y Fundación Jiménez Díaz. Madrid, 12 de marzo de 2004. Ponencia Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, Jose Mª Millán, Diana Valverde. V JORNADA SOBRE ENFERMEDADES HEREDITARIAS DE LA RETINA. (Jornada para pacientes)
- 3. RETINA MADRID. Madrid, Septiembre 2004. **Amaurosis Congénita de Leber: Estudio genético con DNA chip.** Elena VALLESPIN
- 4. ASOCIACIÓN VALENCIANA DE PACIENTES RP. Valencia, 29 Mayo 2004. Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet Carmen Ayuso
- 5. ASOCIACIÓN VALENCIANA DE PACIENTES RP Genética del síndrome de Usher JM Millán
- 6. FEDERACIÓN DE ENFERMEDADES RARAS. síndrome de Usher JM Millán

Información a Profesionales Sanitarios y Científicos

- ONCE Algeciras, 26 de Noviembre 2003. Consejo Genético en Enfermedades Oculares. C. Ayuso
- 2. JORNADA SOBRE FUNDAMENTOS BIOMÉDICOS DE LA PATOLOGÍA OCULAR Y LA PREVENCIÓN DE LA CEGUERA .Fundación UCM y ONCE. Madrid, 10 de Diciembre 2003. **Retinopatías Hereditarias.** C.AYUSO
- CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 12 Diciembre 2003.
 MÓDULO 2.A: GENÉTICA DE LA VISIÓN. Responsable del módulo: Dra. Carmen Ayuso

- **4.** CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. OBA, Facultad de Medicina. Valladolid, 12 Diciembre 2003. **"Principios básicos de genética y biología molecular". C.AYUSO**
- 5. CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 12 Diciembre 2003. "Genética del ciclo visual" C.AYUSO
- 6. CURSO DE OFTALMÓLOGOS CRE (ONCE). Antonio Vicente Mosquete. Madrid, 6 Febrero 2004. "Prevención y Tratamiento de las enfermedades oculares hereditarias: asesoramiento genético y terapia génica" C.AYUSO
- 7. XII REUNION DE LA SOCIEDAD DE GENETICA CLINICA Y DISMORFOLOGIA DE LA ASOCIACIÓN ESPAÑOLA DE PEDIATRIA Barcelona, 5-6 Marzo 2004. Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet .Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, Jose Mª Millán, Diana Valverde
- 8. RETINA MADRID y Fundación Jiménez Díaz. Madrid, 12 de marzo de 2004. Ponencia Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, Jose Mª Millán, Diana Valverde. V JORNADA SOBRE ENFERMEDADES HEREDITARIAS DE LA RETINA. (Jornada para científicos)
- 9. 13TH RETINA INTERNATIONAL WORLD CONGRESS.Noordwijk The Netherlands, 2-3 July 2004. **EsRetNet: SPANISH NETWORK OF RESEARCH ON RETINAL DYSTROPHIES.** Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, José Mª Millán, Diana Valverde.
- 10. Seventeenth IGB Meeting. The Biology and Development of the Eye in Health and Disease. 9 12 October, 2004- Hotel La Palma, Capri, Italy . EsRetNet Spanish Network of Reseach on Retinal Dystrophies. Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, José Mª Millán, Diana Valverde.
- 11. Genetic Counseling in Ophthalmic Genetics: Results of three-years in ONCE Program. E Martín, I Lorda-Sanchez, M Garcia-Hoyos, R Riveiro, F Infantes, C Ramos, C. Ayuso
- 12. Hospital de Tarrasa. 27 Octubre 2004. "Consejo Genético de Enfermedades Genéticas y Cromosómicas". C Ayuso
- 13. CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 14 Diciembre 2004. MÓDULO 2.A: GENÉTICA DE LA VISIÓN. Responsable del módulo: Dra. Carmen Ayuso
- **14.** CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. OBA, Facultad de Medicina. Valladolid, 14 Diciembre 2004. **"Principios básicos de genética y biología molecular". C.AYUSO**
- **15.** CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 14 Diciembre 2004. "Genética del ciclo visual" C.AYUSO
- 16. Congreso de la Sociedad Portuguesa de Oftalmología. Viseu, 2 diciembre 2004. **Curso de Distrofias hereditarias de Retina.** C Ayuso

Información a autoridades sanitarias y centros clínicos en España

- Consejo Inter.-Territorial , Logroño Abril 2004 Red EsRetNet: Logros en 2003.
 C. Ayuso
- **18.** HOSPITAL CRUCES Baracaldo, 13 Mayo 2004 **Red EsRetNet: Logros en 2003**. C. Ayuso

4. VALORACIÓN JUSTIFICADA DE CADA UNO DE LOS NODOS DE LA RED

Reflejar la valoración motivada de cada uno de los nodos, según la siguiente escala. 1 (Excelente), 2 (Bueno), 3 (Aceptable) y 4 (Deficiente).

5. OBSERVACIONES

Realizar las consideraciones que se crean necesarias.

Si la Red lo considera oportuno, reflejar en este epígrafe si se solicita una distribución de la ayuda para 2005 entre los nodos diferente de la que figura en la solicitud inicial, siempre que la cuantía total sea igual a la ayuda recibida en 2004.

ACTIVIDADES DE INTEGRACIÓN Y COORDINACIÓN DESARROLLADAS

EsRetNet pertenece al Instituto Europeo de Vision

EsRetNet participa, representada por Carmen Ayuso como "contractor" en el Proyecto Europeo *integrado REFUGE (Functional Genomics of the retina in health and disease)* presentado al VI programa de la Unión Europea.

Las **actividades de investigación** se han efectuado de acuerdo con lo detallado en la Memoria de Solicitud de la Red:

- 1.- Recogida de la información clínica y las muestras de los pacientes que han acudido a cada NODO con patologías de degeneración retiniana cuyo estudio se centraliza en otros Nodos de la Red.
- 2.- Se han remitido a los Nodos correspondientes para su posterior estudio tanto los datos clínicos en los formatos estandarizados como las muestras biológicas.
- 3.- Recepción en cada NODO desde el resto de los nodos el material correspondiente a los pacientes con un diagnóstico clínico del tipo específico de Distrofia Retiniana que se estudia molecularmente en cada Centro.
- 4.- Envío al Nodo Coordinador para confeccionar las bases de datos correspondientes la información de:
 - i) los genes analizados,
 - ii) las familias incluidas en cada uno de los estudios;
 - iii) los resultados obtenidos.
- 5.- Envío al Nodo Coordinador para confeccionar las bases de datos correspondientes la información de:
 - i) la metodología de estudio genético indirecto de los genes relacionados con las formas específicas de cada tipo de DR o de RP:
 - ii) la metodología de estudio genético directo de los genes relacionados con las formas específicas de cada tipo de DR o de RP;
- 6.- De acuerdo con el plan trazado en la Red se han intercambiado entre los distintos nodos que componen la RED protocolos de técnicas y se ha ayudado a su implantación en el laboratorio.
- 7.- Se dispone de una base informática de datos de la Red, elaborada a partir de todos los datos sobre RP y DR.

Las actividades de formación desarrolladas han sido:

a) Lectura de Tesis Doctorales

> Sara Bernal (NODO 2)

Estudi de les bases moleculars de la retinosi Pigmentaria Autosomica Recesiva: Analisi dels gens RLBP1, CRBP1, RGR, CRB1 i USH2A"

Calificación: Apto Cum Laude

Universitat Autonoma de Barcelona. Julio 2004.

María Gimeno (NODO 3, H Tarrasa)

Caracterización y expresión de mutaciones en genes específicos de la retina asociados a retinosis pigmentaria autosomica dominante"

Universitat Autonóma de Barcelona (Julio 2004).

Calificación sobresaliente "Cum Laude"

Rosana Almela Cortés (NODO 4, FJD)

Síndrome de Usher: Aspectos Clínicos, diagnósticos y terapéuticos.

Facultad de Medicina. UAM. 30 septiembre 2004.

Calificación: Sobresaliente "cum laude" por unanimidad

b) Realización de la parte experimental del trabajo para presentación de la Tesis Doctoral de:

- > Ines Pereiro (NODO 1, U VIGO)
- María García Hoyos, (NODO 4, FJD)
- Rosa Riveiro, (NODO 4, FJD)
- Elena Vallespín, (NODO 4, FJD)
- Diego Cantalapiedra (NODO 4, FJD)
- Isabel Barragán (NODO 5, HVR)
- > Elena Aller (NODO 6, LA FE)
- Teresa Jaijo (NODO 6, LA FE)

c) Realización de cursos de Doctorado de becarios predoctorales

- Participación en los Cursos de Doctorado del programa Metodología y aplicaciones en ciencias de la vida (NODO 1, U VIGO)
- L"Escola de Doctorado y Formació Continuada de la Universitat Autonoma de Barcelona (NODO 3, H TARRASA)
- Participación en los Cursos de Doctorado del programa Genética Molecular UAM (NODO 4, FJD)
- Programa Biología Molecular y Celular I de la Universidad de Sevilla (NODO 5, HVR)
- Participación en los Cursos de Doctorado del programa Genética Molecular y Evolutiva de la Universitat de Valencia. (NODO 6, LA FE)
- Lectura y presentación del Trabajo de Investigación Tutelado "Enfermedad de Stargardt: Estudio clínico y genético" por Rosa Riveiro. Universidad Autónoma de Madrid (NODO 4, FJD)

d) <u>Estancia de formación para Residentes de Servicios de Bioquímica</u> <u>Análisis Clínicos, etc de otros Hospitales:</u>

Angeles Cesar (Octubre 2003-Marzo 2004) (NODO 2)

Mª del Carmen García Arévalo (Enero-Junio 2004) (NODO 4, FJD)

Santiago Martínez (Septiembre 2003- Febrero 2004) (NODO 4, FJD)

Mª del Carmen (Octubre 2004-Marzo 2005) (NODO 4, FJD)

Jana AGUIRRE LAMBAN (Octubre 2004-) (NODO 4, FJD)

e) <u>Cursos</u>

- Programa de doctorado: Metodología y aplicaciones en ciencias de la vida.
 Centro: Departamento de Bioquímica, Genética e Inmunología.
 Facultad de Ciencias. Universidad de Vigo.
- Curso de doctorado: "Diagnóstico molecular en patologías hereditarias humanas". 10 horas.
- Programa de doctorado: Ciencias de la Salud.
 Centro: Hospital Xeral-Cíes y Facultad de Ciencias. Universidad de Vigo.
- Curso de doctorado: "La información genética en patología hereditaria". 10 horas.
- Clases de Patología Molecular, dentro del programa docente de la Licenciatura de Biología, 10 horas
- Organización del Curso de Ciencias básicas en Oftalmología. IOBA.
 Valladolid, 12 Diciembre 2003. Carmen AYUSO,
- Participación como docentes n CURSO DE CIENCIAS BÁSICAS EN OFTALMOLOGÍA. IOBA. Valladolid 12 Diciembre 2003: Carmen AYUSO, María García-Hoyos y Diego Cantalapiedra

- Organización de CURSO PRACTICO DE TECNICAS APLICADAS EN EL LABORATORIO: Módulo II.- Genética Molecular. Madrid, Marzo 2004
- Organización de V JORNADA SOBRE ENFERMEDADES HEREDITARIAS DE LA RETINA. RETINA MADRID y Fundación Jiménez Díaz. Madrid, 12 de marzo de 2004.
- Organización del Curso de Ciencias básicas en Oftalmología. IOBA.
 Valladolid, 14 Diciembre 2004
- Participación como docente en CURSO DE CIENCIAS BÁSICAS EN OFTALMOLOGÍA. IOBA. Valladolid 14 Diciembre 2004: Carmen AYUSO,
- Participación en CURSO DE MUTAGÉNESIS DIRIGIDA Y EXPRESIÓN TRANSITORIA IN VITRO (EsRetNet). Hospital Tarrasa. Barcelona. 28 y 29 de octubre de 2004:
 - Maria Garcia Hoyos, Rosa Riveiro, Elena Vallespin, Carmen Ayuso
- Participación como docentes en JORNADA DE ACTUALIZACIÓN sobre Distrofias de Retina (EsRetNet). Hospital Sant Pau Barcelona. 29 de octubre de 2004:
 - Maria Garcia Hoyos, Rosa Riveiro, Elena Vallespin
- Participación como docentes en los cursos de doctorado *Genómica en Medicina* organizados por la Universidad de Sevilla
- Charlas sobre la genética del síndrome de Usher a Asociaciones de pacientes de RP, síndrome de Usher y Federación de Enfermedades Raras.

f) Conferencias y Ponencias

RETINA MADRID y Fundación Jiménez Díaz. Madrid, 12 de marzo de 2004. Ponencia Aplicaciones de la tecnología de microchips al diagnóstico del Síndrome de Bardet-Biedl y resultados en la enfermedad de Stargardt en población española. Diana Valverde.

V JORNADA SOBRE ENFERMEDADES HEREDITARIAS DE LA RETINA. (Jornada para científicos)

ONCE Algeciras, 26 de Noviembre 2003. **Consejo Genético en Enfermedades Oculares.** C. Ayuso

JORNADA SOBRE FUNDAMENTOS BIOMÉDICOS DE LA PATOLOGÍA OCULAR Y LA PREVENCIÓN DE LA CEGUERA .Fundación UCM y ONCE. Madrid, 10 de Diciembre 2003. **Retinopatías Hereditarias.** C.AYUSO

CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 12 Diciembre 2003.

MÓDULO 2.A: GENÉTICA DE LA VISIÓN. Responsable del módulo: Dra. Carmen Ayuso

CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. OBA, Facultad de Medicina. Valladolid, 12 Diciembre 2003. "Principios básicos de genética y biología molecular". C.AYUSO

CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 12 Diciembre 2003. "Genética del ciclo visual" C.AYUSO

CURSO DE OFTALMÓLOGOS CRE (ONCE). Antonio Vicente Mosquete. Madrid, 6 Febrero 2004. "Prevención y Tratamiento de las enfermedades oculares hereditarias: asesoramiento genético y terapia génica" C.AYUSO

XII REUNION DE LA SOCIEDAD DE GENETICA CLINICA Y DISMORFOLOGIA DE LA ASOCIACIÓN ESPAÑOLA DE PEDIATRIA Barcelona, 5-6 Marzo 2004. **Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet** .Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, Jose Mª Millán, Diana Valverde

RETINA MADRID y Fundación Jiménez Díaz. Madrid, 12 de marzo de 2004. Ponencia **Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet** Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, Jose Mª Millán, Diana Valverde. V JORNADA SOBRE ENFERMEDADES HEREDITARIAS DE LA RETINA. (Jornada para científicos)

Consejo Inter.-Territorial , Logroño Abril 2004 **Red EsRetNet: Logros en 2003**. C. Ayuso

HOSPITAL CRUCES Baracaldo, 13 Mayo 2004 **Red EsRetNet: Logros en 2003**. C. Ayuso

ASOCIACIÓN VALENCIANA DE PACIENTES RP. Valencia, 29 Mayo 2004. Epidemiología, fisiopatología y caracterización clínica y molecular de las distrofias de retina. EsRetNet Carmen Ayuso

13TH RETINA INTERNATIONAL WORLD CONGRESS. Noordwijk The Netherlands, 2-3 July 2004. **EsRetNet: SPANISH NETWORK OF RESEARCH ON RETINAL DYSTROPHIES.** Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, José Mª Millán, Diana Valverde.

RETINA MADRID. Madrid, Septiembre 2004. **Amaurosis Congénita de Leber: Estudio genético con DNA chip.** Elena VALLESPIN

Seventeenth IGB Meeting. The Biology and Development of the Eye in Health and Disease. 9 - 12 October, 2004- Hotel La Palma, Capri, Italy . **EsRetNet Spanish Network of Reseach on Retinal Dystrophies.** Carmen Ayuso, Montserrat Baiget, Guillermo Antiñolo, Miguel Carballo, José Mª Millán, Diana Valverde,

Genetic Counseling in Ophthalmic Genetics: Results of three-years in ONCE Program. E Martín, I Lorda-Sanchez, M Garcia-Hoyos, R Riveiro, F Infantes, C Ramos, C. Ayuso

Hospital de Tarrasa. 27 Octubre 2004. "Consejo Genético de Enfermedades Genéticas y Cromosómicas". C Ayuso

Congreso de la Sociedad Portuguesa de Oftalmología. Viseu, 2 diciembre 2004. **Curso de Distrofias hereditarias de Retina.** C Ayuso

CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 14 Diciembre 2004.

MÓDULO 2.A: GENÉTICA DE LA VISIÓN. Responsable del módulo: Dra. Carmen Ayuso

CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. OBA, Facultad de Medicina. Valladolid, 14 Diciembre 2004. "Principios básicos de genética y biología molecular". C.AYUSO

CURSO DE FUNDAMENTOS DE LA VISIÓN. Ciencias básicas en Oftalmología. IOBA, Facultad de Medicina. Valladolid, 14 Diciembre 2004. "Genética del ciclo visual" C.AYUSO

SETMANA DE LA CIÈNCIA. Escola Universitària d'Optica i Optimetria de Terrassa. Universitat Politécnica de Catalunya.

Terrassa, noviembre 2004.

Retinopatías hereditarias. M. Carballo, M. Maseras, MJ Gamundi y I Hernan.

g) Comunicaciones

EsRetNet, JORNADA DE ACTUALIZACIÓN. Barcelona, 29 octubre 2004 Aplicación de "microarrays" al diagnóstico de distrofias hereditarias de retina. D. Valverde

2004 EUROPEAN SOCIETY OF HUMAN GENETICS, Munich, 12-15 junio 2004. **Phenotype-genotype relationships in Usher Syndrome type IIA**" S. Bernal, C. Medà, M. Baiget

EsRetNet, JORNADA DE ACTUALIZACIÓN. Barcelona, 29 octubre 2004 Papel de los gene USH2A, CRB1 y otros en las Retinosis Pigmentarias autosómicas recesivas Sara BERNAL

XII REUNION DE LA SOCIEDAD DE GENETICA CLINICA Y DISMORFOLOGIA DE LA ASOCIACIÓN ESPAÑOLA DE PEDIATRIA. Barcelona, 5-6 Marzo 2004. ¿Dónde se esconde el Síndrome de Kabuki?. I Lorda, Garcia-Arévalo C, Martinez-Gonzáles V, Rodriguez de Alba M, Ramos Corrales C, Ayuso C.

XII REUNION DE LA SOCIEDAD DE GENETICA CLINICA Y DISMORFOLOGIA DE LA ASOCIACIÓN ESPAÑOLA DE PEDIATRIA. Barcelona, 5-6 Marzo 2004. **Variante de Síndrome de Axenfeld-Rieger. Caso clínico.** Martínez González V.M., Lorda-Sanchez I., Ruiz Barnes P., Trujillo, García-Hoyos M., Riveiro R., Ramos C., Ayuso C.

XVII CONGRESO NACIONAL ASOCIACIÓN ESPAÑOLA DE TÉCNICOS DE LABORATORIO. Murcia, 28-30 Mayo 2004. Estudio Genético en familias afectadas de ataxia espinocerebelosa tipo 7 (SCA7). A Giménez, MJ Trujillo, D Mayo, J Gallego, A Queipo, F Infantes, R Cardero, I Lorda, C Ayuso

XVII CONGRESO NACIONAL ASOCIACIÓN ESPAÑOLA DE TÉCNICOS DE LABORATORIO.Murcia, 28-30 Mayo 2004. Estudio del gen de la periferina (RDS) en familias afectas de Retinosis Pigmentaria Autosómica Dominante. A Queipo Rojas, M García-Hoyos, MJ Trujillo, A Gimenez, F Infantes, R. Riveiro, J. Gallego, D. Cantalapiedra, y C. Ayuso

2004 EUROPEAN SOCIETY OF HUMAN GENETICS, Munich, 12-15 junio 2004. **X** Linked juvenile retinoschisis in 14 Spanish families: identification of 4 novel mutations. R Riveiro, M García-Hoyos, D Cantalapiedra, A Queipo, C Ramos, MJ Trujillo, M Baiget y C Ayuso.

2004 EUROPEAN SOCIETY OF HUMAN GENETICS, Munich, 12-15 junio 2004. **Molecular study of ABCA4 gene on Spanish patients with retinal dystrophies: preliminary results.** D. Valverde, R. Riveiro, A. Queipo, C. Ayuso.

2004 EUROPEAN SOCIETY OF HUMAN GENETICS, Munich, 12-15 junio 2004. Refinement of the t X-choromosome breakpoint in a female carrying a 4;X translocation. M García-Hoyos, R Sanz, I Lorda-Sanchez, MJ Trujillo, Rodriguez de Alba M, R Riveiro, A Queipo, C Ramos, C Ayuso.

2004 EUROPEAN SOCIETY OF HUMAN GENETICS, Munich, 12-15 junio 2004. Spinocerebellar ataxia type 7: correlations between phenotype and genotype in 8 Spanish families. MJ Trujillo,-Tiebas, A Giménez-Pardo, D Mayo, D Cantalapiedra, M Garcia-Hoyos, J Gallego-Merlo, I Lorda-Sanchez, C Ayuso.

2004 EUROPEAN SOCIETY OF HUMAN GENETICS, Munich, 12-15 junio 2004. **Usherin mutations in autosomal recessive Retinitis Pigmentosa Spanish families.** S. Bernal, M. Calaf, E. del Rio, B. Garcia-Sandoval, C. Ayuso, M. Baiget

2004 EUROPEAN SOCIETY OF HUMAN GENETICS, Munich, 12-15 junio 2004. **Phenotype-Genotype relationships in Usher Syndrome type IIA.** C. Meda, S. Bernal, C. Ayuso, D. Valverde, M. Calaf, M. Baiget

13TH RETINA INTERNATIONAL WORLD CONGRESS. Noordwijk The Netherlands, 2-3 July 2004. **Genetic characterisation of Leber Congenital Amaurosis.** Vallespin E, Garcia-Hoyos M, Cantalapiedra D, Riveiro-Alvarez R, Queipo A, Bernal S, Gallego J, Gimenez A, Trujillo-Tiebas MJ, Baiget M, Ayuso C.

80 CONGRESO DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. Córdoba, 29 Septiembre- 2 Octubre 2004. **Mutaciones en el gen de la Usherina asociadas a Retinitis Pigmentosa Autosómica Recesiva.** T Solans, S Bernal, B García-Sandoval, C Ayuso y M Baiget

80 CONGRESO DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. Córdoba, 29 Septiembre- 2 Octubre 2004. **Amaurosis Congénita de Leber: Estudio clínico y genetico.** B Garcia- Sandoval, Vallespin E, Garcia-Hoyos M, Cantalapiedra D, Riveiro-Alvarez R, Queipo A, Bernal S, Gallego J, Gimenez A, Trujillo-Tiebas MJ, Baiget M, Avuso C.

EsRetNet, JORNADA DE ACTUALIZACIÓN. Barcelona, 29 octubre 2004 LCA y Patrones de herencia multigénica en las distrofias hereditarias de retina. Elena VALLESPIN

EsRetNet, JORNADA DE ACTUALIZACIÓN. Barcelona, 29 octubre 2004 **Coroideremia y XLRP** Maria GARCIA HOYOS.

EsRetNet, JORNADA DE ACTUALIZACIÓN. Barcelona, 29 octubre 2004 **Enfermedad de Stargardt** Rosa RIVEIRO

European Human Genetics Conference 2004. Munich, Germany, June 12-15, 2004 Mutation screening of Clarin-1and SANS genes in Spanish patients with Usher syndrome

Aller, Elena, Jaijo, T., Oltra, S., Nájera, C., Beneyto, M., Millán, JM

European Human Genetics Conference 2004. Munich, Germany, June 12-15, 2004 **Mutation profile of MYO7A gene in Spanish patients with Usher síndrome type I.** Jaijo, Teresa, Aller, E., Oltra, S., Nájera, C., Beneyto, M., Millán, JM

Congreso de la Sociedad Española de Otorrinolaringología y Patología cérvico-facial- I Congreso Hispano-Marroquí- II Congreso Hispano Argentino, San Sebastián, España, 11-15 Octubre 2004.

La mutación en el gen de la conexina como causa de hipoacusia genética. 55 Collado Martín D, Cavallé L, Millán JM, Prieto F, Faus J, Morera-Faet H, Morera C.

El gen USH2A: un ejemplo de heterogeneidad fenotípica.

Elena ALLER

EsRetNet, JORNADA DE ACTUALIZACIÓN. Barcelona, 29 octubre 2004

Espectro de mutaciones en el gen USH2A y genotipos asociados

E. Aller, C. Náiera, JS. Oltra, H. Pérez, C. Vilela, A. Navea, JM. Millán, M. Beneyto

Identificación de una nueva mutación en el gen USH3 en una familia con síndrome de Usher

JM. Millán, E. Aller, JS. Oltra, F.Galán, J. Alió, M. Beneyto, C. Nájera

3. RESULTADOS MAS IMPORTANTES ALCANZADOS

PROYECTOS DE INVESTIGACIÓN FINANCIADOS

NODO 1

EPIDEMIOLOGÍA, FISIOPATOLOGÍA Y CARACTERIZACIÓN CLÍNICA Y MOLECULAR DE LAS DISTROFIAS HEREDITARIAS DE LA RETINA ESRETNET.

Ayudas e incentivos Programa de Promoción Xeral da Investigación do Plan Galego de IDIT. PGIDT04PXIC30102PN

Investigador Principal: Diana Valverde y Armando Caballero.

-Duración: 2003-2006 -Cuantía: 11.000 €.

NODO 2

CARACTERIZACIÓN CLÍNICA Y MOLECULAR DE DISTROFIAS HEREDITARIAS DE RETINA. (Genes y mecanismos moleculares asociados a formas Autsosómicas Recesivas)

Proyecto de Investigación Coordinado F.I.S.(Nº Referencia:PI 0200**).

Investigador Principal: Montserrat Baiget

EPIDEMIOLOGÍA, FISIOPATOLOGIA Y CARACTERIZACIÓN CLINICA Y MOLECULAR DE LAS DISTROFIAS HEREDITARIAS DE RETINA Provecto ONCE

Investigadora Principal: Montserrat Baiget

NODO 3

EPIDEMIOLOGÍA, FISIOPATOLOGIA Y CARACTERIZACIÓN CLINICA Y MOLECULAR DE LAS DISTROFIAS HEREDITARIAS DE RETINA Provecto ONCE

Investigador Principal: Miguel CARBALLO

NODO 4

CARACTERIZACIÓN CLÍNICA Y MOLECULAR DE DISTROFIAS HEREDITARIAS DE RETINA. (Genes y mecanismos moleculares asociados a formas Ligadas al X)

Proyecto de Investigación Coordinado F.I.S.(Nº Referencia:PI 020092). Investigador Principal y Coordinadora: Carmen AYUSO

Análisis de la función de las Secreted Frizzled Related Proteins (SFRPs) en modelos murinos de distrofias de retina y su posible correlación en patología retiniana humana.

SubProyecto Coordinado CAM (2003- Oct 2004) (08.5/0033/2003)

Investigadora Principal: Carmen AYUSO

Amaurosis Congénita de Leber (LCA): Estudio genético en 25 familias

Proyecto de Investigación Retina Madrid (2004)

Investigadora Principal: Carmen AYUSO

INSTITUTO DE INVESTIGACIÓN DE ENFERMEDADES RARAS DE BASE GENÉTICA

Red de Centros FIS C03/05 (2003-2005)

Investigador Principal y Coordinadora NODO: Carmen AYUSO

Proyecto Solicitados

Caracterización genética en pacientes con Distrofias de Retina mediante Genotipado de alto rendimiento: Microarrays y otras técnicas: Casos Esporádicos, Precoces y no informativos

Proyecto de Investigación Coordinado asociado a Red F.I.S.(Nº Referencia:PI 040193). Investigador Principal y Coordinadora: Carmen AYUSO

Amaurosis Congénita de Leber (LCA) y Retinosis Pigmentaria precoz: Estudio clínico y genético.

Proyecto de Investigación CAM (2005) Investigadora Principal: Carmen AYUSO

NODO 5

CARACTERIZACIÓN CLÍNICA Y MOLECULAR DE DISTROFIAS HEREDITARIAS DE RETINA. (Genes y mecanismos moleculares asociados a formas Autsosómicas Recesivas(2)

Proyecto de Investigación Coordinado F.I.S.(Nº Referencia:PI 0200**).

Investigador Principal: Guillermo Antiñolo

EPIDEMIOLOGÍA, FISIOPATOLOGIA Y CARACTERIZACIÓN CLINICA Y MOLECULAR DE LAS DISTROFIAS HEREDITARIAS DE RETINA Proyecto ONCE

Investigador Principal: Guillermo Antiñolo

NODO 6

Proyecto FIS 01/0081-02

Investigadora principal Magdalena Beneyto

Proyecto ONCE

Investigadora principal Magdalena Beneyto y Carmen Nájera

PUBLICACIONES

AÑO 2003

Baris O, Delettre C, Amati-Bonneau P, Surgert MO, J.F. C, Catier A, Dollfus H, Jonveaux P, Bonneau D, Ayuso C, Maumenee I, Lorenz B, Mohammed SN, Tourmen Y, Malthièry Y, Hamel CP, Reynier P

Novel OPA1 mutation in dominant optic atrophy and de novo mutations in isolated cases of optic atrophy.

Hum Mut 2003 (Mutation in brief #623)

Carmen Ayuso

Amaurosis Congénita de Leber (LCA): Estudio clínico y genético. VISIÓN Nº 23. Noviembre 2003: 22-26

AÑO 2004.-

M Saura, M. Cabana, C.Ayuso, D. Valverde

Mutations including the promoter region of myocilin/TIGR gene *Eur J Human Genetics*, 2004 Oct 13 [Epub ahead of print]

C. Mateo, JG. Moreno, M. Lechuga, A. Adan, B. Corcostegui

Surgical removal of peripapillary choroidal neovascularization associated with optic nerve drusen

Retina 2004; 24: 739-745

A.Adan, M. Baget, JM de Llobet, A. Segura, T. Marieges, R. Casaroli

Uveitis como manifestacion inicial de sarcoidosis: estudio de 31 pacientes. Med Clin (Barc) 2004; 122: 748-752

O. Gris, J. Guell, Ch. Wolley-Dod, A. Adan

Diffuse lamellar keratitis and corneal edema associated with viral keratoconjuntivitis 2 years after laser in situ keratomileusis

J Cataract Refract Surg 2004; 30: 1366-1370

Aherne A, Kennan A, Kenna PF, McNally N, Lloyd DG, Alberts IL, Kiang AS, Humphries MM, Ayuso C, Engel PC, Gu JJ, Mitchell BS, Farrar GJ, Humphries P.1 On the molecular pathology of neurodegeneration in IMPDH1-based retinitis pigmentosa.

Hum Mol Genet. 2004 Mar 15;13(6):641-50

ME Gallardo, AS Schneider, MA Dwyer, C Ayuso, P Bovolenta and S Rodriguez de Córdoba

Analysis of the developmental SIX6 homeobox gene in patients with anophthalmia /microphthalmia

Am J Med Genet. 2004 Aug 15;129A(1):92-4.

Garcia-Hoyos, M.1, Cantalapiedra, D.1, Arroyo, C.1, Esteve, P.2, Rodríguez, J.2, Riveiro, R.1, Trujillo, M.J.1, Ramos, C.1, Bovolenta, P.2, Ayuso, C.1 Sfrp1 gene mutations are not a common cause of human retinal distrophies *Mol Vis. 2004 Jun 28;10:426-31*

C .Cenjor Español, C. Ayuso, P. Gomez Viñas, B García Sandoval Sindrome de Usher: Actualizacion y Plateamientos Terapéuticos

Markus N. Preising and Carmen Ayuso

RAB Escort Protein 1 (REP1) in Intracellular Traffic. A functional and pathophysiological Overview.

Ophthalmic Genet. 2004 Jun;25(2):101-10

Aller E, Nájera C, Millán JM, Oltra JS, Pérez-Garrigues H, Vilela C, Navea A, Beneyto M.

Genetic analysis of 2299delG and C759F mutations (USH2A) in patients with visual and/or auditory impairments

Eur.J.Hum.Genet. 12:407-410 (2004)

Aller E, Jaijo T, Oltra S, Alió J, Galán F, Nájera F, Beneyto M, Millán JM.

Mutation screening of USH3 gene (clarin-1) in Spanish patients with Usher syndrome. Low prevalence and phenotypic variability.

Clinical Genetics.2004 Dec;66(6):525-9

Mataftsi Asimina Zografos Leonidas, Milla Elena, Secretan Michel, Munier Francis L.

Bietti's Crystalline Corneoretinal Dystrophy: A Cross-Sectional Study.

Retina 2004 Jun;24(3):416-26

Retina 2004 Jun;24(3):416-26

Arch Opthal (2004)

CAPITULOS DE LIBROS

José M. Millán

Medicina Interna. Cap. 7; Heterogeneidad Genética. 648-651.

C.AYUSO, M.Baiget, F. Palau y V. Volpini.

"Patología Molecular Hereditaria II"

Capítulo

en: PATOLOGÍA MÉDICA" Edición 2004

Farreras Rozman, Barcelona 2004.

C.AYUSO. M.Varela.

"Participación dento-facial en las enfermedades genéticas y cromosómicas" en: PATOLOGÍA DENTO FACIAL

EN PRENSA (ACEPTADOS)

R.Riveiro-Alvarez, M.J. Trujillo, A.Gimenez, M.Garcia-Hoyos, D.Cantalapiedra, I.Lorda, M.Rodriguez de Alba, C.Ramos, C.Ayuso.

Genotype-phenotype variations in five Spanish families with Norrie disease or X-linked FEVR.

Mol Vision

Millá E, Vergés C. Endothelial cell density in continuous anterior chamber infusion during phacoemulsification.

Cornea 2004 in press

Barragan I, Marcos I, Borrego S, Antiñolo G.

Molecular analysis of RIMI in autosomal recessive retinitis pigmentosa. *Ophthalmic Research, en revisión.*

Milla E, Gamundi MJ, Martinez-Gimeno M, Hernan I, Carballo M.

Novel LMX1B Mutation in Familiar Nail- Patella syndrome with variable Expresivity of Open Angle Glaucome (2004)

Archives Ophthalmol. (aceptada en revision)

EN PRENSA (SOMETIDOS)

Barhoum MR, Esteve P, Garcia-Hoyos M, Germain-Martinez F, Fermin Y, Queipo A, Ayuso C, Bovolenta P, and de la Villa P.

An increased expression of Sfrps parallels the extent of retinal degeneration in mouse models for Retinitis Pigmentosa *IOVS*

M Garcia-Hoyos, R Sanz, D Diego, I Lorda, D Cantalapiedra, MJ Trujillo, C Ramos & C Ayuso

Refinement of the X-chromosome breakpoint in a female patient carrying a 4;X translocation

Eur J Hum Genet , submitted

M Garcia-Hoyos, R Riveiro, MJ Trujillo, M Baiget, C Ramos & C Ayuso

Prenatal diagnosis of X –linked juvenile retinoschisis

Ophthalmic Genetics, submitted

R. Navarro, C. Mateo, B. Corcostegui, M. Baiget, S. Bernal

Submacular surgery for choroidal neovascularizatio associated with Goldmann-Favre Syndrome

2004 (Sometido)

Espunya MC, Lopez-Giraldez T, Hernan I, Carballo M, Martinez MC. Diferential Expresión of genes coding for protein Kinase CK" subunits in cell división . *Biochem J. (2004) (enviado para publicación)*

S. Bernal, C. Meda, M. Baiget

Phenotype-genotype relationships in Spanish patients with Usher syndrome 2004 (en preparacion).

PROGRAMACIÓN ACTUALIZADA DE ACTIVIDADES PARA LA SIGUIENTE ANUALIDAD

La Red de Grupos EsResNet, de acuerdo con lo expuesto en la Memoria de Solicitud de la Red, **tiene programadas las siguientes actividades**, para la próxima anualidad 2005 siguiendo el cronograma reseñado:

- Desarrollo del registro genético español.
- Desarrollo de metodología genética de estudio directo de genes relacionados con diferentes formas clínicas y genéticas de Distrofias de Retina y de Retinosis Pigmentaria.
- Análisis de espectro mutacional en todas las formas de RP.
- Identificación de nuevos genes y loci implicados en RP.
- Continuar con los experimentos de expresión in vitro: genes MiosinaVIIA, Usherina, Clarina-1 y SANS,
- Análisis de las familias excluidas de mutaciones y loci conocidos, mediante estudios de ligamiento a través del genoma entero, de los casos esporádicos y ARRP no informativos para Búsqueda de regiones de homozigosidad eldentificación de casos con IsoDisomía Uniparental
- Mapeo de regiones/loci implicados en DR
- Caracterización de genes expresados en retina, localizados en la región crítica del locus RP25. (arrp)
- Análisis de mutaciones en nuevos genes candidatos ADRP, ARRP etc.
- Estudio de la relación genotipo-fenotipo.
- Diseminación de la información entre pacientes, organizaciones, profesionales sanitarios, investigadores, autoridades sanitarias y centros clínicos en España.

Además de la actividad previamente programada EsRetNet tiene previsto para el año 2005:

- Continuar con la aplicación de microarrays al estudio de otras enfermedades de retina: LCA (Amaurosis Congénita de Leber)y Stargardt (Nodos 1 y 4)
- Ampliarlo a formas precoces y tardias de ARRP, casos esporádicos. (Nodos 2, 4 y 5)
- Validar y aplicar a su uso diagnóstico los chips de genotipado para S de Usher (Nodo 6)
- Empezar el diseño de otros microarrays de genotipado, para ADRP (Nodo 3), ARRP (nodos 2 y 4), y S Bardet Biedl (Nodo 1)
- Estudiar el papel de genes modificadores y tri/tetra alelismo de DR
- Participar en la investigación y actividades planteadas en el proyecto europeo IP REFUGE (Functional Genomics of the retina in health and disease) presentado al VI programa de la Unión Europea

2. VALORACIÓN GLOBAL DE LA RED

Durante el 2º año de implantación de la Red, el trabajo de colaboración ha sido muy estrecho.

A partir de los datos recogidos duarnte el 1er año en las bases de datos comunes , se ha profundizado en algunos aspectos fundamentales: metodológicos y de análisis de nuestros resultados.

Aportaciones Específicas de cada Nodo

1. Innovación Metodológica:

Incorporación de genotipado por micro-arrays a la práctica diagnóstica

Nodos 1: Enfermedad de Stargardt

Nodo 4: Amaurosis Congénita de Leber

Diseño y Validación de nuevos DNA chips

Nodo 5: Síndromes de Usher

2. Nuevos Diseños Experimentales

Puesta a punto de técnicas de Mutagénesis dirigida

Nodo 3: Genes NRL, RDS, etc

Estudios de Expresión

Nodo 3: Genes NRL, RDS, etc

Nodo 4: Genes REP-1 RPGR, etc

3. Búsqueda de Nuevos Genes/ Loci

Caracterización Locus RP25

Nodo 5: Screening genes candidatos y refinamiento de la región

4. Caracterización de Fenotipos

Caracterización Fenotipo asociado a Usherina

Nodos 2 y 6: Familias Recesivas y Familias con S Usher

5. Aportación muy significativa con casos al Registro

Nodos 2, 4, 5 y 6

6. Nodo Emergente

Para integrar mas plenamente al grupo emergente en todas las acatividades de la Red, se ha nombrado a la Dra. Diana Valverde (IP del NODO 6) secretaria de la red EsRetNet, encargándose de la organización de la información recopilada por todos los grupos y ayudando a la Coordinadora (Dra Ayuso) en las tareas de organización y administración de la Red, así como en la elaboración de la memoria de la Red EsRetNet presentada dentro del proyecto europeo IP **REFUGE** (Functional Genomics of the retina in health and disease) presentado al VI programa de la Union Europea.

Además, Diana Valverde (INODO 1) es la IP responsable de establecer y mantener las colaboraciones con la compañía AsperBio para la aplicación de microarrays para Genotipado en enfermedades de la Retina (ABCA4, LCA y Otros)

Además cada Nodo ha desarrollado todos los objetivos comunes y particulares planteados (Ver en esta memoria y memorias de cada Nodo)

El Comité Científico de la Red se ha reunido en 4 ocasiones y en todas las reuniones se acordaron los objetivos a cumplir y se revisaron los ya alcanzados por parte de cada nodo y responsable.

Entre los objetivos comunes alcanzados más importantes destacan:

Actualización y desarrollo de los protocolos de estudio clínico oftalmológico y neurofisiológico

Protocolo NODO Persona responsable

Protocolo Clasificación Genética NODO 4 Carmen AYUSO

Protocolo Oftalmológico NODO 4 Blanca GARCIA SANDOVAL

Protocolo Electrofisiológico NODO 6 Concepción VILELA

Protocolo Clínico Usher NODO 6 Hermino

Protocolo Clínico Bardet Biedl NODO 4 C. AYUSO Isabel LORDA Protocolo Stargardt NODO 4 B.GARCIA SANDOVAL

2. Desarrollo de un registro genético español

Se realizó a partir de los datos de las familias/pacientes procedentes de cada NODO de origen

Con los datos de resultados de estudio molecular cumplimentados por el NODO dónde se realiza el estudio

Familias Bardet Biedl y Stargardt

Familias ARRP(a)

Familias ADRP

NODO 2

NODO 3

Familias XLDR

NODO 4

Familias ARRP (b)

NODO 5

Familias Usher

NODO 6

3. Formato para la base de datos y formato para "case report"

Se desarrolló por los IP de los Nodos 1 (C Ayuso), (G Antiñolo) 3 y 5 (JM Millán)

4. Revisión de los procedimientos clínico y molecular

Se ha realizado un inventario de técnicas disponibles en cada Nodo que fue recogido por el IP del NODO 5 (G Antiñolo) y la Coordinadora de la Red

Asimismo los protocolos de dichas técnicas fueron evaluados y consensuados por todos los investigadores de la red

> Técnicas Disponibles: Persona Responsable

Purificación DNA manual y con kit S. Bernal (NODO 2)

Purificación DNA automática A. Giménez y María García (NODO 4)

Extracción RNA manual y con kit
SSCP con electroforesis en gel y P
SSCP con electroforesis capilar
DGGE
María García (NODO 4)
María García (NODO 4)
María García (NODO 4)
María Giménez (NODO 3)
Irene Marcos (NODO 5)

SNP por Digestión Enzimática S. Bernal (NODO 2)

Microsatélites y Genescan Rosa Riveiro y D Cantalapiedra (NODO 4)

Microarrays

RNA (RT-PCR)

PCR Cuantitativa

Expresión "in vitro"

Cultivo Celular

Citogenética

Diana Valverde (NODO 1)

María García (NODO 4)

María García (NODO 4)

C Ayuso (NODO 4)

G Antiñolo (NODO 5)

FISH I Lorda (NODO 4)
CGH I Lorda (NODO 4)

Métodos de Análisis Disponibles:

Linkmap JM Millán (NODO 6) Cyrillic JM Millán (NODO 6)

5. Puesta a punto de metodología genética indirecta en loci DR

6. Desarrollo de metodología genética directa en genes DR

Cada NODO se encargó de la revisión de los procedimientos específicos a aplicar a las patologias-genes, objeto de estudio por parte de su grupo. Dichos procedimientos fueron recogidos en la Red, estando a disposición de todos los nodos.

Las personas encargadas de recoger dicha información fueron:

metodología indirecta metodología directa 1 y 2) JM Millan (NODO 6) DValverde, MBaiget (NODOS

7. Análisis del espectro mutacional de los genes conocidos DR

Se realizó a partir de los datos aportados por Nodo1 (XLRP, XLRS y CHM), Nodos 2 y 3 (ARRP), Nodo 4 (ADRP), Nodo 5 (Usher) y Nodo 6 (S Bardet Biedl y Stargardt)

10. Caracterización Genotipo-Fenotipo

Se ha procedido a establecer la correlación genotipo-fenotipo de forma generalizada, para todas las patologías / genes posibles, a partir de los datos que aparecen en los artículos publicados por los investigadores de la Red.

Persona Responsable D Valverde (NODO 1) C Ayuso(Coordinadora)

Por todo lo anterior, la valoración Global de la red en su conjunto y cada Nodo en particular es EXCELENTE.

En Madrid a 29 d Noviembre de 2004

Coordinador de la Red,

Fdo.:Carmen AYUSO GARCIA